Relicensing Study 3.8.1

Evaluate the Impact of Current and Potential Future Modes of Operation on Flow, Water Elevation and Hydropower Generation

Study Report

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889)

Prepared for:

Prepared by:

MARCH 2017

EXECUTIVE SUMMARY

FirstLight Hydro Generating Company (FirstLight) is the current licensee of the Northfield Mountain Pumped Storage Project (FERC No. 2485) and the Turners Falls Hydroelectric Project (FERC No. 1889). FirstLight has initiated with the Federal Energy Regulatory Commission (FERC, the Commission) the process of relicensing the two Projects using the FERC's Integrated Licensing Process (ILP). The current licenses for Northfield Mountain and Turners Falls Projects were issued on May 14, 1968 and May 5, 1980, respectively, with both set to expire on April 30, 2018. This report documents the results of Study No. 3.8.1 *Evaluate the Impact of Current and Potential Future Modes of Operations on Flow, Water Elevation and Hydropower Generation* (Operations Study).

The study plan developed and approved for this study contained three primary objectives: 1.) develop a baseline model of the mainstem Connecticut River from the Wilder Project to the Holyoke Project, 2.) use the model to determine the impact of potential alternative modes of operation on hydropower generation and economics, and 3.) use model results to inform other studies.

The study objectives were met by collecting data from various government agencies and hydropower generators for the development of an operations model. The model was first calibrated to generation and flows at the United States Geological Survey (USGS) on the Connecticut River at Montague, MA for calendar year 2002. A baseline model was subsequently developed to reflect today's operating equipment and today's operating requirements. <u>Table E-1</u> provides a breakdown of the resulting total generation from the FirstLight Projects provided by the baseline run. There were no deviations from the study plan.

Project Station		Modeled Generation (MWh)	
Northfield Mountain	Northfield Station	923,968	
Turners Falls	Cabot Station	272,045	
	Station No. 1	19,420	
Total		1,215,433	

 Table E-1: Power Generation for Baseline Run

TABLE OF CONTENTS

1	INTRODUCTION1-1			
2	SUMMARY OF DATA COLLECTION2-1			
	2.1	Time Series Data2-1		
		2.1.1United States Geological Survey Data		
	2.2	Engineering Data		
	2.3	Operations Data		
3	MOL	DEL DEVELOPMENT		
	3.1	Existing Model		
	3.2	Model Modifications		
		 3.2.1 Physical Data Inputs		
4	MOL	DEL RUNS4-1		
	4.1	Calibration Settings		
	4.2	.2 Baseline Settings		
	4.3	Production Settings		
5	MOL	DEL RESULTS		
	5.1	Calibration Results		
	5.2	Baseline Results		
	5.3	Production Results		
6	DISC	CUSSION		
7	REF	ERENCES		

LIST OF TABLES

Table E-1: Power Generation for Baseline Run	i
Table 2.1.1-1: USGS Gages used in Operations Study	2-1
Table 3.2.1-1: Variable Lag Streamflow Routing Locations	3-2
Table 3.2.1-2: Streamflow Routing through the TFI	
Table 5.1-1: Comparison of Power Generation for Calibration Run	5-1
Table 5.2-1: Power Generation for Baseline Run	5-2

LIST OF FIGURES

Figure 3.2-1: FirstLight Model Overview	3-3
Figure 4.1-1: Flow Duration Curve Comparison at Montague (Annual)	4-3
Figure 4.1-2: Flow Duration Curve Comparison at Montague (Jan, Feb, Mar)	4-4
Figure 4.1-3: Flow Duration Curve Comparison at Montague (Apr, May, Jun)	4-5
Figure 4.1-4: Flow Duration Curve Comparison at Montague (Jul, Aug, Sep)	4-6
Figure 4.1-5: Flow Duration Curve Comparison at Montague (Oct, Nov, Dec)	4-7
Figure 5.1-1: Turners Falls Impoundment (Calibration Run)	5-3
Figure 5.1-2: Montague USGS Gage Duration Curve (Calibration Run)	5-4
Figure 5.1-3: Cabot Station (Calibration Run)	5-5
Figure 5.1-4: Station No. 1 (Calibration Run)	5-6
Figure 5.1-5: Montague USGS Gage (Calibration Run)	5-7
Figure 5.2-1: Turners Falls Impoundment (Baseline Run)	5-8
Figure 5.2-2: Cabot Station (Baseline Run)	5-9
Figure 5.2-3: Station No. 1 (Baseline Run)	5-10
Figure 5.2-4: Montague USGS Gage (Baseline Run)	5-11

LIST OF APPENDICES

APPENDIX A – ENGINEERING DATA APPENDIX B – OPERATIONS DATA

LIST OF ABBREVIATIONS

cfs	cubic feet per second	
CRUISE	Connecticut River Unimpacted Streamflow Estimation	
FERC	Federal Energy Regulatory Commission	
FirstLight	FirstLight Hydro Generating Company	
HEC-ResSim	Hydrologic Engineering Center Reservoir Simulation	
ILP	Integrated Licensing Process	
Operations Study	Study 3.8.1 – Evaluate the Impact of Current and Potential Future Modes of	
	Operation on Flow, Water Elevations, and Hydropower Generation	
PAD	Pre-Application Document	
PSP	Proposed Study Plan	
RSP	Revised Study Plan	
SD1	Scoping Document 1	
SD2	Scoping Document 2	
SPDL	Study Plan Determination Letter	
TFI	Turners Falls Impoundment	
TNC	The Nature Conservancy	
UMass	University of Massachusetts	
USACE	United States Army Corps of Engineers	
USGS	United States Geological Survey	
VY	Vermont Yankee Nuclear Power Plant	
WSEL	water surface elevation	

1 INTRODUCTION

FirstLight Hydro Generating Company (FirstLight) is the current licensee of the Northfield Mountain Pumped Storage Project (FERC No. 2485) and the Turners Falls Hydroelectric Project (FERC No. 1889). FirstLight has initiated with the Federal Energy Regulatory Commission (FERC, the Commission) the process of relicensing the two Projects using the FERC's Integrated Licensing Process (ILP). The current licenses for Northfield Mountain and Turners Falls Projects were issued on May 14, 1968 and May 5, 1980, respectively, with both set to expire on April 30, 2018.

As part of the ILP, FERC conducted a public scoping process during which various resource issues were identified. On October 31, 2012, FirstLight filed its Pre-Application Document (PAD) and Notice of Intent with the FERC. The PAD included FirstLight's preliminary list of proposed studies. On December 21, 2012, FERC issued Scoping Document 1 (SD1) and preliminarily identified resource issues and concerns. On January 30 and 31, 2013, FERC held scoping meetings for the two Projects. FERC issued Scoping Document 2 (SD2) on April 15, 2013.

FirstLight filed its Proposed Study Plan (PSP) on April 15, 2013 and, per the Commission regulations, held a PSP meeting at the Northfield Visitors Center on May 14, 2013. Thereafter, FirstLight held ten resource-specific study plan meetings to allow for more detailed discussions on each PSP and on studies not being proposed. On June 28, 2013, FirstLight filed with the Commission an Updated PSP to reflect further changes to the PSP based on comments received at the meetings. On or before July 15, 2013, stakeholders filed written comments on the Updated PSP. FirstLight filed a Revised Study Plan (RSP) on August 14, 2013 with FERC addressing stakeholder comments.

On August 27, 2013 Entergy Corp. announced that the Vermont Yankee Nuclear Power Plant (VY), located on the downstream end of the Vernon Impoundment on the Connecticut River and upstream of the two Projects, will be closing no later than December 29, 2014. With the closure of VY, certain environmental baseline conditions will change during the relicensing study period. On September 13, 2013, FERC issued its first Study Plan Determination Letter (SPDL) in which many of the studies were approved or approved with FERC modification. However, due to the impending closure of VY, FERC did not act on 19 proposed or requested studies pertaining to aquatic resources. The SPDL for these 19 studies was deferred until after FERC held a technical meeting with stakeholders on November 25, 2013 regarding any necessary adjustments to the proposed and requested study designs and/or schedules due to the impending VY closure. FERC issued its second SPDL on the remaining 19 studies on February 21, 2014, approving the RSP with certain modifications.

This report contains the results of Study No. 3.8.1 - *Evaluate the Impact of Current and Potential Future Modes of Operation on Flow, Water Elevation, and Hydropower Generation* (Operations Study), which was completed through the development of an operations simulation model. The Operations Study was approved with modifications in the first SPDL (i.e. dated September 13, 2013). The lone modification was with regards to the evaluation of ramping rates, and allowed FirstLight to perform this assessment through either "the HEC-RAS modeling proposed in Study 3.2.2, or with a modified HEC-ResSim model" (FERC, 2013). FirstLight has determined that the evaluation of ramping rates is best performed with the HEC-RAS model, and thus will not be addressed in this report.

The specific goals and objectives of this study are:

• To develop a baseline model of the Connecticut River Basin – specifically the reach from the Wilder Project to the Holyoke Project – which includes the following hydropower facilities: TransCanada's Wilder, Bellow Falls, and Vernon Hydroelectric Projects, FirstLight's Turner Falls Hydroelectric Project and Northfield Mountain Project and Holyoke Gas and Electric's Holyoke Hydroelectric Project.

- The model will be used to determine the impact on hydropower generation and economics due to potential alternative modes of operation. Potential alternative modes of operation could include minimum flows in the bypass reach, changes in Turners Falls Impoundment (TFI) fluctuations, changes in operation of the Turners Falls Project relative to peaking operations, etc.
- Flow data generated from the model will be used to inform other studies, notably the hydraulic model and instream flow study.

Note: All figures and larger tables appear at the end of each Section.

2 SUMMARY OF DATA COLLECTION

Data collection efforts for model development and calibration include time series, engineering, and operations data as described below.

2.1 Time Series Data

The time series data collected includes observed and simulated datasets.

2.1.1 United States Geological Survey Data

Data used in this study from the United Stated Geological Survey (USGS) includes observed gage data and simulated data. The USGS maintains gages throughout the country, for which it estimates flow in cubic feet per second (cfs) based on rating curves (river stage versus flow) developed for each site. <u>Table 2.1.1-1</u> lists the USGS Gages used in this study for either developing model inputs or comparison with model results as described in later sections of this report.

Gage Number	Description	
01161000	Ashuelot River at Hinsdale, NH	
01166500	Millers River at Erving, MA	
01170000	Deerfield River near West Deerfield, MA	
01170500	Connecticut River at Montague City, MA	

 Table 2.1.1-1: USGS Gages used in Operations Study

Simulated data from the USGS's Connecticut River Unimpacted Streamflow Estimation (CRUISE) model was also collected. The CRUISE model estimates daily unregulated flows (i.e. natural flows) utilizing basin-wide regression equations at 407 locations along the Connecticut River and its major tributaries (<u>Archfield *et. al.*, 2013</u>). Using the CRUISE model, the USGS has developed daily flow data for the period of October 1, 1960 through September 30, 2012. Some of this flow data was used as inputs for the operations model as described in later sections of this report.

2.1.2 United States Army Corps of Engineers Data

Simulated flow data based on a model developed by the United States Army Corps of Engineers (USACE) was collected. This model estimates flow in the Connecticut River and its major tributaries using inflows from all 407 nodes of the USGS's CRUISE model along with engineering data for the many hydroelectric and flood control dams. The USACE simulated flows under existing operating conditions for the period of October 3, 1960 through September 27, 2012¹. Some results from this model were used as inputs for the operations model as described in later sections of this report.

¹ The data originally provided by the USACE included simulation results for the period of January 1, 1961 through December 30, 2003. A new simulation results file was provided in August 2014 for the extended period of record. A review of this data raised concerns with its validity as some results do not correspond very well with historical USGS Gage records. For example, one location suggests a daily average peak flow (i.e. 124,104 cfs) which is 20 times larger than the historical daily average peak flow (6,180 cfs). Therefore, the model currently uses the dataset originally provided by the USACE.

2.1.3 FirstLight Data

The FirstLight observed operations data collected for use in this study includes flows through pumps and turbines², water surface elevation (WSEL) in the TFI and Northfield Mountain Upper Reservoir, and power generation output. Some of these data were used as inputs for the operations model, while some were used during comparison of results as described in later sections of this report.

2.1.4 TransCanada Data

The observed total discharge from the Vernon Hydroelectric Project was provided by TransCanada for use in this study as an input during model calibration. The total discharge included flow through the turbines and flow passed via gates.

2.2 Engineering Data

The current applicable engineering data listed below was collected from both FirstLight and TransCanada for their respective hydropower projects on the Connecticut River mainstem. The following information is provided in Appendix A.

- Impoundment (e.g. stage-storage curves)
- Dam (e.g. elevation, tailwater rating curve)
- Power Plant(s) (e.g. minimum and maximum hydraulic capacity, generator capacity, overload factor)
- Pumps (e.g. hydraulic capacity)

2.3 **Operations Data**

The applicable operations data listed below was collected from both FirstLight and TransCanada for their respective hydropower projects on the Connecticut River mainstem. The following information is provided in Appendix B.

- Pool Fluctuation Limitations (e.g. minimum, maximum)
- Flow Release Limitations (e.g. minimum)

² In some cases flows were calculated using cfs vs MW rating curves; not direct measurement.

3 MODEL DEVELOPMENT

The development of an operations simulation model for the Operations Study began with the creation of a smaller model from an existing model (i.e. subset of existing model). This smaller model was then modified to achieve the goals and objectives of the Operations Study.

3.1 Existing Model

A partnership consisting of the Nature Conservancy (TNC), the USACE, the USGS, and the University of Massachusetts (UMass) at Amherst, developed a simulation model of the entire Connecticut River Basin using the USACE Hydrologic Engineering Center Reservoir System Simulation (HEC-ResSim) program³. The model includes all of the hydroelectric projects on the Connecticut River mainstem, as well as larger hydroelectric projects and flood control reservoirs on tributaries to the Connecticut River. It is a substantial model covering the entire geographic area of the basin on a daily time step for the period 1960 to 2003. The flow data for the model was developed by the USGS in Northborough, MA. FirstLight and TNC reached an agreement whereby TNC provided FirstLight with the USACE's HEC-ResSim model in exchange for FirstLight's engineering data on the Turners Falls Project and Northfield Mountain Project, as the existing model lacked detailed engineering data on FirstLight's Projects. The existing model will herein be referred to as the USACE model.

3.2 Model Modifications

Using the USACE model, a smaller model was developed for the Operations Study (i.e. a subset of the USACE model), which will herein be referred to as the FirstLight model. The FirstLight model includes the Connecticut River mainstem extending from the upper of the three TransCanada Projects (i.e. Wilder)⁴ down to the Holyoke Project (FERC No. 2004), as indicated in Figure 3.2-1. The following sections detail additional changes made to the FirstLight Model for the purposes of the Operations Study.

3.2.1 Physical Data Inputs

The USACE model incorrectly defined the Northfield Mountain Project as an inline reservoir (i.e. dam on the Connecticut River). Therefore, the FirstLight model was modified to correctly simulate the Northfield Mountain Project as an offline reservoir with pump/turbine units to transfer water between the Upper Reservoir (i.e. offline reservoir) and the Lower Reservoir (i.e. TFI along the Connecticut River). Similarly, the FirstLight model was modified to more accurately represent the distribution of flows between the Turners Falls Dam and the Power Canal. Therefore a reservoir to represent the Power Canal was added which accounts for discharge from Cabot Station, Station No. 1, fish attraction and ladder structures, Turners Falls Hydro and Paperlogic.

Due to the FirstLight model operating on an hourly time step, the distribution of routing was also adjusted from how it was set up in the USACE model. The USACE model only applied variable lag streamflow routing to one reach within the study area of the FirstLight model (i.e. just upstream of the Vernon Project). This rather large lag time was instead distributed to several locations as presented in <u>Table 3.2.1-1</u>. The values of Lag and K for locations 3a through 3d were based on FirstLight operating procedures (i.e. Appendix B of the 1972 document titled "*Reservoir and River Flow Management Procedures*"), which estimates the travel time for flow between the Vernon and Turners Falls Projects as presented in <u>Table</u>

³ HEC-ResSim is a software program designed to model reservoir operations at one or more reservoirs where operations are defined by a variety of operational goals and constraints. The software program was developed by the USACE's Hydrologic Engineering Center in Davis, CA and is publicly available from the USACE.

⁴ The three TransCanada Projects in upstream to downstream order include: Wilder (FERC No. 1892), Bellows Falls (FERC No. 1855), and Vernon (FERC No. 1904, located immediately upstream of the Turners Falls Impoundment).

<u>3.2.1-2</u>. According to these FirstLight operating procedures, flow entering from the Ashuelot River takes 80% of the travel time, and flow entering from the Millers River takes 40% of the travel time compared to flow discharged from the Vernon Project.

Location	Description	Lag/K Values
1	Just Upstream of Bellows Falls Project	8
2	Just Upstream of Vernon Project	4
3a	Just Upstream of Confluence with Ashuelot River	Varies (20% of <u>Table 3.2.2-2</u>)
3b	Just Upstream of Confluence with Pauchaug Brook	Varies (20% of <u>Table 3.2.2-2</u>)
3c	Just Upstream of Northfield Mountain Tailrace	Varies (20% of <u>Table 3.2.2-2</u>)
3d	Just Downstream of Confluence with Millers River	Varies (40% of <u>Table 3.2.2-2</u>)

Tabla 3 2 1-1.	Variabla I	og Stroomflow	Routing	Locations
1 able 3.2.1-1.	variable L	ag Su cannow	Kouting	Locations

Table 3.2.1-2.	Streamflow	Routing	through	the	TFI
1 abic 5.2.1-2.	Sucannow	Routing	unougn	unc	T T, T

Flow (cfs)	Lag/K Values
0	10.0
13,000	10.0
14,000	9.5
15,000	9.0
17,000	8.5
19,000	8.0
22,000	7.5
25,000	7.0
30,000	6.5
36,000	6.0
42,000	5.5
51,000	5.0
63,000	4.5
77,000	4.0
108,000	3.5
170,000	3.0

3.2.2 Engineering and Operations Data Inputs

After reviewing the USACE model, it was noted that detail of the TransCanada and FirstLight Projects was lacking. Therefore an agreement was reached between FirstLight and TransCanada to exchange engineering and operations data for each company's hydropower projects. The FirstLight model was modified to incorporate the engineering and operations data for the TransCanada and FirstLight hydroelectric projects.

Figure 3.2-1: FirstLight Model Overview

4 MODEL RUNS

The previous section identified adjustments to the FirstLight model which apply to all runs performed for the Operations Study. This section will further identify the inputs and parameters which differed for each run.

4.1 Calibration Settings

A flow duration curve was developed using the observed flows (i.e. between 1975 and 2015) from the USGS Gage at Montague. This flow duration curve was used to help identify an appropriate year for calibration purposes. Calendar year 2002 was selected for the calibration run because a) it fell within the period of record of currently available CRUISE and USACE flow data (i.e. $1961-2011)^5$, b) the flow duration curve for this year is generally representative of the period of record at Montague (see Figure 4.1- $1)^6$, and c) it is more likely to be representative of current operations (i.e. being more recent). In addition to the annual flow duration curve, we have included monthly flow duration curves as shown in Figures 4.1-2 (Jan, Feb, Mar), 4.1-3 (Apr, May, June), 4.1-4 (Jul, Aug, Sep) and 4.1-5 (Oct, Nov, Dec). As can be seen from these monthly flow durations the spring runoff for 2002 is fairly representative of the period of record is a sindicated by April and May), while 2002 was a rather dry summer (i.e. as indicated by August and September).

The calibration run attempted to use as much observed data as possible to verify that the scripts used to simulate the Turners Falls and Northfield Mountain Projects were appropriate. Therefore, the portions of the FirstLight model upstream of and including the Vernon Project were disconnected, and the observed discharges from the Vernon Project were used as flow inputs. Additionally, the observed flows at the USGS Gages on the Ashuelot, Millers, and Deerfield Rivers were used as flow inputs. The observed flows from the USGS Gages on the Ashuelot and Millers Rivers were prorated to account for the entire drainage area between the Vernon and Turners Falls Projects. Thus all other flow data inputs locations between the Vernon and Turners Falls Projects (i.e. cumulative local inflow locations and tributaries inflow locations) were set to zero for the calibration run. The observed flow from the USGS Gage on the Deerfield was prorated to account for the additional drainage area between the gage and the mouth of the Deerfield River (i.e. at the confluence of the Deerfield and Connecticut Rivers) and the remaining small drainage areas between the Turners Falls Dam and the Montague USGS Gage. The remaining flow data inputs (i.e. downstream of the Turners Falls Project) consist of a combination of CRUISE model results and USACE model results. All inflows at cumulative local flow locations along the Connecticut River mainstem were defined using results from the CRUISE model, while all inflows from major tributaries were defined using results from the USACE model. The CRUISE and USACE models produce daily flow outputs, however, the FirstLight model was modified to support an hourly time step. As such, the daily flow outputs from the CRUISE and USACE models were converted to an hourly time step using straight line interpolation.

The units at Cabot Station of the Turners Falls Project were upgraded between 2001 and 2004, while the units at the Northfield Mountain Project were upgraded between 2004 and 2016. Therefore, the unit capacity and unit efficiencies utilized for the calibration run were defined to be consistent with the units installed during the 2002 calendar year. Additionally, the observed pumping and generation schedule from 2002 was used to define the operations at the Northfield Mountain Project for the calibration run. Finally, the Turners Falls Project was operated to try to maintain a total storage in the TFI and the Northfield

⁵ Due to the potential issues with the USACE data discussed in Section 2.1.2, the true period of record currently available for calibration is 1960 through 2003.

⁶ While the USGS Gage at Montague provides daily flows starting in 1903, the period of record used for this analysis begins in 1975 due changes in the regulation of the Connecticut River Basin (e.g. construction of flood storage facilities, implementation of minimum flow requirements).

Mountain Upper Reservoir which exceeds the storage capacity of the Northfield Mountain Upper Reservoir between its FERC allowable operating limits. The excess storage is termed the reservoir imbalance, and is used in the FirstLight model to define the TFI guide curve (i.e. target TFI WSEL). The average reservoir imbalance observed during each month of 2002 was used for the calibration run. It should be noted that the FirstLight model includes a reservoir imbalance adjustment based on TFI WSELs (i.e. to better match the WSEL duration curve for Turners Falls), as well as a reservoir imbalance adjustment for the time of day (i.e. to better match peaking operations).

4.2 Baseline Settings

The baseline run utilizes flow inputs from the 2002 calendar year for the same reasons presented for the calibration run, however, the baseline run uses a different geographic extent and different data sources for some of the flow inputs. The baseline run considers the full FirstLight model (i.e. includes the Wilder, Bellows Falls, and Vernon Projects), and utilized a combination of CRUISE model results and USACE model results for all of its flow data input locations. All inflows at cumulative local flow locations along the Connecticut River mainstem were defined using results from the CRUISE model, while all inflows from major tributaries were defined using results from the USACE model. These flow inputs were again converted to an hourly time step (i.e. from a daily time step) using straight line interpolation.

The baseline run utilizes the current (i.e. upgraded) unit capacity and efficiency values for the Turners Falls and Northfield Mountain Projects. The observed pumping and generation schedule from 2009 (i.e. as opposed to 2002) was used to define the operations at the Northfield Mountain Project for the baseline run, because it is considered more representative of current operations. These changes to the Northfield Mountain Project operations appear to have impacted the average monthly reservoir imbalance for the Turners Falls Project. Therefore, the average monthly reservoir imbalance used for the baseline run is based on data from 2012 to 2016. The baseline also slight altered the hourly adjustments to the reservoir imbalance for the values used for the calibration run.

4.3 **Production Settings**

The term production run refers to making modifications to the baseline model to reflect a new operating regime. For example, a production run could consist of simulating a higher minimum flow in the bypass channel. To date, no production runs have been made, but should FirstLight enter into settlement discussions with stakeholders, it would be making production runs. It should be noted that changes to the FirstLight model, necessary for completing potential future production runs, could require that the calibration and baseline runs be reanalyzed.

Montague USGS Gage - Comparison of Flow Duration Curves (Annual)

Figure 4.1-1: Flow Duration Curve Comparison at Montague (Annual)

Figure 4.1-2: Flow Duration Curve Comparison at Montague (Jan, Feb, Mar)

Figure 4.1-3: Flow Duration Curve Comparison at Montague (Apr, May, Jun)

Figure 4.1-4: Flow Duration Curve Comparison at Montague (Jul, Aug, Sep)

Montague USGS Gage - Comparison of Flow Duration Curves (Oct, Nov, Dec)

Figure 4.1-5: Flow Duration Curve Comparison at Montague (Oct, Nov, Dec)

5 MODEL RESULTS

5.1 Calibration Results

The calibration run met all minimum flow requirements for the Turners Falls Project, and stayed within the range of the TFI and Northfield Mountain Upper Reservoir WSELs observed during 2002. Figure 5.1-1 provides a comparison of the observed and modeled water elevation elevations curves of the TFI as measured at the Turners Falls Dam. The WSEL duration curve is generally within 0.2 ft, other than at the extremes (i.e. less than 10% exceedance and greater than 99% exceedance) which indicates a good match. Figure 5.1-2 provides a comparison of the observed and modeled flow duration curves at the Montague USGS Gage.

The magnitude and timing of generation also matched rather well, as shown in <u>Table 5.1-1</u>, as well as <u>Figure 5.1-3</u> (Cabot Station) and <u>Figure 5.1-4</u> (Station No. 1). While the observed vs modeled total generation at Station No. 1 does not match as well as at Northfield or Cabot, Station No. 1 is not a major contributor to the overall generation at the Northfield Mountain and Turners Falls Projects. Shown in <u>Figure 5.1-5</u> is a comparison of the observed and modeled flow at the Montague USGS Gage. While the timing of generation does not exactly match the observed timing, the calibration run reasonably simulates the peaking operations.

Project	Station	Observed Generation (MWh/yr)	Modeled Generation (MWh/yr)	Difference (%)
Northfield Mountain	Northfield Station	1,327,953	1,294,774	-2.5%
Turne and Falls	Cabot Station	228,123	242,179	+6.2%
Turners Fails	Station No. 1	23,368	19,730	-15.6%
Tot	al	1,579,444	1,556,682	-1.4%

 Table 5.1-1: Comparison of Power Generation for Calibration Run

It should be noted that changes to the FirstLight model necessary for completing potential future production runs could have slight implications for the calibration results.

5.2 Baseline Results

The baseline run met all minimum flow requirements for the Turners Falls Project. Figure 5.2-1 provides a comparison of the TFI exceedance elevations for observed and baseline conditions. The minimum and maximum exceedance curves are composite curves based on the exceedance curves for each year between 2000 and 2016. The baseline exceedance curve is higher than expected starting around the 18% exceedance mark, which is a little higher than the results from the calibration run (i.e. approximately 12%). It should be noted that the modeled TFI WSELs are still within the FERC allowable range 176 to 185 (ft NGVD 1929) as measured at the Turners Falls Dam. Table 5.2-1 provides the magnitude of generation for the baseline run. This table does not include a comparison, because it combines hydrology, unit capacities, and Northfield Mountain operations from different years. Figures 5.2-2, 5.2-3, and 5.2-4 indicate that the baseline run still does a reasonable job of simulating the timing of generation for peaking operations.

Table 5.2-1. 1 over Generation for Dasemie Run			
Project	Station	Modeled Generation (MWh/yr)	
Northfield Mountain	Northfield Station	923,968	
Turners Falls	Cabot Station	272,045	
	Station No. 1	19,420	
Total		1,215,433	

Table 5.2-1: Power	Generation	for	Baseline	Run
	Other action	101	Dabenne	

It should be noted that changes to the FirstLight model necessary for completing potential future production runs, could have slight implications for the baseline results.

5.3 **Production Results**

No production runs have been completed to date. The FirstLight model will be used to determine the effect of potential modified operations on generation, WSELs, and flows. The FirstLight model may also be used as the licensing process moves forward to address stakeholder comments on other studies. Such studies may include but are not limited to:

- Study 3.1.2: Northfield Mountain/Turners Falls Operations Impact on Existing Erosion and Potential Bank Instability
- Study 3.2.2: Hydraulic Study of Turners Falls Impoundment, Bypass Reach and below Cabot Station
- Study 3.3.1: Conduct Instream Flow Habitat Assessments in the Bypass Reach and Below Cabot Station

Figure 5.1-1: Turners Falls Impoundment (Calibration Run)

Figure 5.1-2: Montague USGS Gage Duration Curve (Calibration Run)

Figure 5.1-3: Cabot Station (Calibration Run)

Station No. 1 - Comparison of Observed and Calibration Run Results

Figure 5.1-5: Montague USGS Gage (Calibration Run)

Turners Falls Impoundment - Comparison of Observed and Baseline Run Results

Figure 5.2-1: Turners Falls Impoundment (Baseline Run)

Figure 5.2-2: Cabot Station (Baseline Run)

Station No. 1 - Comparison of Observed and Baseline Run Results

Figure 5.2-3: Station No. 1 (Baseline Run)

Figure 5.2-4: Montague USGS Gage (Baseline Run)

6 **DISCUSSION**

The USACE model was modified as appropriate in the creation of the FirstLight model to better simulate the operations of the Turners Falls and Northfield Mountain Projects. As part of these modifications additional information was collected with regards to the TransCanada Projects (i.e. Wilder, Bellows Falls, and Vernon) for incorporation into the model. A calibration run was performed with the FirstLight model using observed information from calendar year 2002. This calibration run provided acceptable agreement in TFI WSELs, as well as timing of and total generation output. Slight modifications were made from the calibration run for the purposes of defining a baseline run, which better represents current operations. The results of the baseline run were found to be similar to the results expected from current operations.

7 **REFERENCES**

- Archfield, S. A., P. A. Steeves, J. D. Guthrie, and K. G. Ries III. (2013). Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers. Geoscientific Model Development, 6, 101–115.
- Wright, J. (2013) "Federal Energy Regulatory Commission Study Plan Determination Letter for the Turners Falls Hydroelectric Project and the Northfield Mountain Pumped Storage Project." Letter to FirstLight. 13 Sept. 2013.
- FirstLight Hydro Generating Company. (2013). Revised Study Plan for the Turners Falls Hydroelectric Project (No. 1889) and Northfield Mountain Pumped Storage Project (No. 2485). Northfield, MA.

United States Geological Survey Gages:

- Ashuelot River at Hinsdale, NH (Gage No. 01161000) http://waterdata.usgs.gov/nwis/inventory/?site_no=01161000
- Millers River at Erving, MA (Gage No. 01166500) http://waterdata.usgs.gov/nwis/inventory/?site_no=01166500
- Deerfield River near West Deerfield, MA (Gage No. 01170000) http://waterdata.usgs.gov/nwis/inventory/?site_no=01170000
- Connecticut River at Montague City, MA (Gage No. 01170500) http://waterdata.usgs.gov/nwis/inventory/?site_no=01170500

APPENDIX A – ENGINEERING DATA

Wilder Project

Elevation at Top of Dam: 393.0 ft

Generation Facilities

Capacity	Overload	Hydraulic Capacity (cf		
(MW)	Factor	Minimum	Maximum	
35.6	1.1	400	12,125	

Stage-Storage Curve

Stage (ft)	Storage (acre-ft)			
355	0			
356	106			
357	224			
358	354			
359	496			
360	650			
361	822			
362	1,015			
363	1,235			
364	1,475			
365	1,740			
366	2,025			
367	2,505			
368	3,255			
369	4,175			
370	5,225			
371	6,360			
372	7,585			
373	8,900			
374	10,305			
375	11,800			
376	13,410			
377	15,160			
378	17,050			
379	19,080			
380	21,250			
381	23,575			
382	26,075			
383	28,745			
384	31,585			
385	34,600			

Tailwater Rating Curve				
Stage (ft) Flow (cfs)				
327.5	0			
327.7	700			
331.9 12,700				
349.0	62,600			
355.4	94,000			
358.0	108,000			
364.0 135,000				

Bellows Falls Project

Elevation at Top of Dam: 305.5 ft

Generation Facilities

Capacity	Overload	Hydraulic Capacity (cfs		
(MW)	Factor	Minimum	Maximum	
40.8	1.1	700	11,550	

Stage-Storage Curve					
Stage (ft)	Storage (ac-ft)				
283.6	10,633				
283.7	10,773				
283.8	10,913				
283.9	11,054				
284.0	11,194				
284.1	11,334				
284.2	11,482				
284.3	11,630				
284.4	11,778				
284.5	11,926				
284.6	12,074				
284.7	12,230				
284.8	12,385				
284.9	12,541				
285.0	12,696				
285.1	12,852				
285.2	13,015				
285.3	13,179				
285.4	13,342				
285.5	13,506				
285.6	13,669				
285.7	13,840				
285.8	14,011				
285.9	14,182				
286.0	14,353				
286.1	14,524				
286.2	14,703				
286.3	14,882				
286.4	15,060				
286.5	15,239				
286.6	15,418				
286.7	15,605				
286.8	15,792				
286.9	15,979				
287.0	16,166				
287.1	16,353				
287.2	16,549				

Storage Curve (Continued) Sta				
Stage (ft)	Storage (ac-ft)			
287.3	16,745			
287.4	16,940			
287.5	17,136			
287.6	17,332			
287.7	17,537			
287.8	17,742			
287.9	17,946			
288.0	18,151			
288.1	18,356			
288.2	18,570			
288.3	18,783			
288.4	18,997			
288.5	19,210			
288.6	19,424			
288.7	19,647			
288.8	19,870			
288.9	20,094			
289.0	20,317			
289.1	20,540			
289.2	20,774			
289.3	21,007			
289.4	21,241			
289.5	21,474			
289.6	21,708			
289.7	21,952			
289.8	22,196			
289.9	22,440			
290.0	22,684			
290.1	22,928			
290.2	23,183			
290.3	23,437			
290.4	23,691			
290.5	23,945			
290.6	24,200			
290.7	24,465			
290.8	24,730			
290.9	24,994			

Stage-Storage Curve (Continued) Stage-Storage Curve (Continued)

Stage (ft)	Storage (ac-ft)
291.0	25,259
291.1	25,524
291.2	25,799
291.3	26,074
291.4	26,350
291.5	26,625
291.6	26,900

Tailwater Rating Curve

Stage (ft)	Flow (cfs)
225.63	0
226.63	500
226.80	1,300
227.63	5,000
228.63	9,900
228.70	11,010
230.63	29,900
233.63	54,900
237.63	94,900

Vernon Project

Elevation at Top of Dam: 228.0 ft

Generation Facilities

Capacity	Overload	Hydraulic Capacity (cfs		
(MW)	Factor	Minimum Maximu		
32.4	1.1	1,600	17,130	

Stage-Storage Curve Stage-Storage Curve (Continued) Stage-Storage Curve (Continued)					Continued)	
Stage (ft)	Storage (ac-ft)		Stage (ft)	Storage (ac-ft)	Stage (ft)	Storage (ac-ft)
212.1	0		216.1	8,590	220.1	18,289
212.2	200		216.2	8,821	220.2	18,545
212.3	400		216.3	9,052	220.3	18,802
212.4	600		216.4	9,283	220.4	19,058
212.5	800		216.5	9,514	220.5	19,315
212.6	1,000		216.6	9,745	220.6	19,571
212.7	1,205		216.7	9,980	220.7	19,831
212.8	1,410		216.8	10,214	220.8	20,090
212.9	1,615		216.9	10,449	220.9	20,350
213.0	1,820		217.0	10,683	221.0	20,609
213.1	2,025		217.1	10,918	221.1	20,869
213.2	2,235		217.2	11,155	221.2	21,131
213.3	2,444		217.3	11,393	221.3	21,393
213.4	2,654		217.4	11,631	221.4	21,656
213.5	2,864		217.5	11,869	221.5	21,918
213.6	3,073		217.6	12,107	221.6	22,181
213.7	3,287		217.7	12,348	221.7	22,446
213.8	3,500		217.8	12,588	221.8	22,711
213.9	3,714		217.9	12,830	221.9	22,976
214.0	3,926		218.0	13,071	222.0	23,241
214.1	4,140		218.1	13,312	222.1	23,507
214.2	4,358		218.2	13,556		
214.3	4,575		218.3	13,800		
214.4	4,792		218.4	14,044	Tailwater Rat	ing Curve
214.5	5,009		218.5	14,288	Stage (ft)	Flow (cfs)
214.6	5,226		218.6	14,533	181.5	0
214.7	5,447		218.7	14,780	181.7	1,600
214.8	5,668		218.8	15,027	182.0	4,500
214.9	5,889		218.9	15,275	185.4	12,634
215.0	6,110		219.0	15,522	186.0	14,000
215.1	6,330		219.1	15,769	187.0	19,000
215.2	6,555		219.2	16,020	194.0	44,000
215.3	6,779		219.3	16,270	198.5	64,000
215.4	7,003		219.4	16,521		
215.5	7,227		219.5	16,771		
215.6	7,452		219.6	17,021		
215.7	7,679		219.7	17,275		
215.8	7,907		219.8	17,529		
215.9	8,135		219.9	17,782		
216.0	8.362		220.0	18.036		

Northfield Mountain Project

Elevation at Top of Dam: 1,010 ft

Generation Facilities

Capacity	Overload	Hydraulic Capacity (cfs		
(MW)	Factor	Minimum Maximu		
1,166.6	0	2,500	20,000	

Curve	<u> </u>
Storage (ac-ft)	
0	
88	
177	
269	
363	
459	
558	
658	
760	
865	
972	
1,081	
1,192	
1,306	
1,422	
1,540	
1,660	
1,781	
1,905	
2,030	
2,157	
2,286	
2,417	
2,550	
2,685	
2,823	
2,962	
3,101	
3,244	
3,387	
3,532	
3,678	
3,827	
3,976	
4,128	
4,281	
4,436	
4,593	
4,752	
4,912	
	Storage (ac-ft) 0 88 177 269 363 459 558 658 760 865 972 1,081 1,192 1,306 1,422 1,540 1,660 1,781 1,905 2,030 2,157 2,286 2,417 2,550 2,685 2,823 2,962 3,101 3,244 3,387 3,532 3,678 3,827 3,976 4,128 4,281 4,436 4,593 4,752 4,912

Stage-Storage	Curve (Continued)	
Stage (ft)	Storage (ac-ft)	
960.0	5,077	
961.0	5,248	
962.0	5,425	
963.0	5,597	
964.0	5,775	
965.0	5,956	
966.0	6,141	
967.0	6,328	
968.0	6,519	
969.0	6,713	
970.0	6.910	
971.0	7.110	
972.0	7.314	
973.0	7.520	
974.0	7,729	
975.0	7 940	
976.0	8 1 5 5	
977.0	8 374	
978.0	8,596	
979.0	8,820	
980.0	9.046	
981.0	9,010	
982.0	9 508	
983.0	9 743	
984.0	9.980	
985.0	10 221	
986.0	10,221	
980.0	10,404	
987.0	10,710	
988.0	11,938	
989.0	11,200	
990.0	11,401	
991.0	11,/51	
992.0	11,9/1	
993.0	12,229	
994.0	12,489	
995.0	12,750	
996.0	13,014	
997.0	13,280	
998.0	13,547	
999.0	13 816	

Stage-Storage	Curve	(Continued)
Diage-Diorage	Curve	(Commucu)

Stage (ft)	Storage (ac-ft)
1000.0	14,087
1000.5	14,223
1001.0	14,360
1002.0	14,633
1003.0	14,969
1004.0	15,187
1004.5	15,327

Pumping Facilities

Operating	Pump Capacity	
Head (ft)	(cfs)	
759.00	3,700.00	
765.00	3,650.00	
771.00	3,600.00	
778.00	3,550.00	
784.00	3,500.00	
790.00	3,450.00	
796.00	3,400.00	
804.00	3,350.00	
810.00	3,300.00	
815.00	3,250.00	
822.00	3,200.00	
826.00	3,150.00	
832.00	3,100.00	
835.00	3,050.00	
840.00	3,000.00	

Turners Falls Project

Elevation at Top of Dam: 200.0 ft

Generation Facilities

Station	Capacity	Overload	Hydraulic C	apacity (cfs)
Station	(MW)	Factor	Minimum	Maximum
Station No. 1	5.693	1.15	112	2,210
Cabot	62.016	0	1,400	13,728

Stage-Storage Curve

Tailwater Rating Curve (at Dam) Tailwater Rating Curve (at Cabot)

Stage (ft)	Storage (acre-ft)
172.26	0
176.00	4,150
177.00	5,600
178.00	7,500
179.00	9,200
180.00	11,100
181.00	13,000
182.00	14,750
183.00	16,600
184.00	18,450
185.00	20,200
186.00	22,100
186.50	23,000

Stage (ft)	Flow (cfs)
135.00	0
136.00	500
136.75	1,000
137.15	1,500
137.50	2,000
138.00	3,000
138.40	4,000
138.70	5,000
139.30	7,500
139.75	10,000
140.60	15,000
141.10	18,000
143.05	30,000
145.45	45,000
149.10	70,000
153.00	100,000
159.20	150,000
165.35	200,000
171.30	250,000

ier Kanng Curve (at Cabot)		
Stage (ft)	Flow (cfs)	
107.5	0	
108.2	1,400	
108.5	2,000	
109.0	3,000	
109.5	4,000	
110.0	5,000	
110.5	6,000	
111.0	7,000	
111.5	8,000	
112.0	9,000	
112.5	10,000	
115.0	20,000	
117.0	30,000	
123.5	50,000	
133.0	100,000	
140.5	150,000	
148.0	200,000	
153.5	250,000	

Tailwater Rating Curve (at Station No. 1)

Stage (ft)	Flow (cfs)
129.50	0
129.54	1,892
129.60	5,000
129.70	10,000
129.90	15,000
130.05	20,000
130.20	25,000
131.00	35,000
132.30	50,000
139.00	100,000
148.20	170,000
155.00	250.000

Holyoke Project

Elevation at Top of Dam: 117.8 ft

Generation Facilities

Capacity	Overload	Hydraulic Capacity (cfs	
(MW)	Factor	Minimum	Maximum
30	1.1	-	14,250

Stage-Storage Curve

Stage (ft)	Storage (acre-ft)
97.47	0
99.47	4,580
100.67	7,025

Tailwater Rating Curve (at Dam)

Stage (ft)	Flow (cfs)
68.0	0
76.0	112,000
77.5	158,000
78.3	180,000
80.3	242,000

APPENDIX B – OPERATIONS DATA

Wilder Project

FERC Normal Operating Limits: 380.0 ft to 385.0 ft

Minimum Flow Requirements

	Required Flow on Given Start Date (cfs)						
	01-Jan	01-Apr	15-May	16-Jun	16-Jul	15-Sep	16-Nov
- Fish Ladder	-	-	25	25	-	25	-
- Downstream Fish Passage	-	512	512	-	-	-	-
- Aquatic Habitat Requirement	675	675	675	675	675	675	675
Minimum Project Flow ¹ (i.e. greatest of above)	675	675	675	675	675	675	675

Notes:

1. Minimum flow requirements can be reduced no lower than the total project inflow.

Bellows Falls Project

FERC Normal Operating Limits: 288.6 ft to 291.6 ft

Minimum Flow Requirements

	Required Flow on Given Start Date (cfs)						
	01-Jan	01-Apr	15-May	16-Jun	16-Jul	15-Sep	16-Nov
- Fish Ladder	-	-	80	80	-	80	-
- Downstream Fish Passage	-	255	255	-	-	-	-
- Aquatic Habitat Requirement	1,083	1,083	1,083	1,083	1,083	1,083	1,083
Minimum Project Flow ¹ (i.e. greatest of above)	1,083	1,083	1,083	1,083	1,083	1,083	1,083

Notes:

1. Minimum flow requirements can be reduced no lower than the total project inflow.

Vernon Project

FERC Normal Operating Limits: 218.6 ft to 219.8 ft

Minimum Flow Requirements

	Required Flow on Given Start Date (cfs)						
	01-Jan	01-Apr	15-Apr	16-Jun	16-Jul	15-Oct	
- Fish Ladder	-	-	260	260	-	-	
- Downstream Fish Passage	-	390	390	390	390	340	
- Aquatic Habitat Requirement	1,250	1,250	1,250	1,250	1,250	1,250	
Minimum Project Flow ¹ (i.e. greatest of above)	1,250	1,250	1,250	1,250	1,250	1,250	

Northfield Mountain Project

FERC Normal Operating Limits: 938.0 ft to 1,000.5 ft

Turners Falls Project

FERC Normal Operating Limits: 176.0 ft to 185.0 ft

Minimum Flow Requirements

	Required Flow on Given Start Date (cfs)						
	01-Jan	01-Apr	07-Apr	16-Jul	15-Sep	16-Nov	
Discharges to Bypass Reach							
- Spillway Ladder Attraction	-	300	300	-	-	-	
- Sturgeon Requirement	-	-	-	120	120	-	
- Aquatic Habitat Requirement	-	400	400	-	-	-	
Minimum Bypass Flow ¹		400	400	120	100		
(i.e. greatest of above)	-	400	400	120	120	-	
Discharges to Canal							
Gatehouse Ladder Attraction	-	270	270	-	270	-	
Gatehouse Ladder	-	235	235	-	235	-	
Minimum Requirement		505	505	-	505	-	
(i.e. cumulative)	-	505	505				
Discharges from Canal							
Spillway Ladder	-	18	18	-	18	-	
Cabot Ladder Attraction	-	335	335	-	335	-	
Cabot Ladder	-	33	33	-	33	-	
Log Sluice (downstream passage)	-	-	200	200	200	-	
Minimum Requirement		386	586	200	586	-	
(i.e. cumulative)	-						
Minimum Canal Flow ¹		505	596	200	586	-	
(i.e. greatest of to/from requirement)	-	505	500	200			
Discharges from Project							
Minimum Project Flow ¹	1,433	1,433	1,433	1,433	1,433	1,433	

Notes:

1. Minimum flow requirements can be reduced no lower than the total project inflow.

Holyoke Project

FERC Normal Operating Limits: 99.47 ft to 100.67 ft

Minimum Flow Requirements

	Required Flow on Given Start Date (cfs)				
	01-Jan	01-Apr	01Dec		
Minimum Bypass Flow	_	150	_		
(i.e. greatest of above)	-	150	-		