

May 31, 2016

VIA ELECTRONIC FILING

Ms. Kimberly D. Bose Secretary Federal Energy Regulatory Commission 888 First Street, NE Washington, DC 20426

 Re: FirstLight Hydro Generating Company, Turners Falls Hydroelectric Project (FERC No. 1889) and Northfield Mountain Pumped Storage Project (FERC No. 2485).
 Response to Stakeholder Requests for Study Modifications and/or New Studies Based on the Study Report and Meeting Summary

Dear Secretary Bose:

Pursuant to the regulations of the Federal Energy Regulatory Commission (Commission or FERC), Title 18 Code of Federal Regulations (18 C.F.R.) § 5.15(f), FirstLight Hydro Generating Company (FirstLight) encloses for filing this response to comments on FirstLight's Study Reports and meeting summary for the relicensing of the Turners Falls Hydroelectric Project (TF Project, FERC No. 1889) and Northfield Mountain Pumped Storage Project (NMPS Project, FERC No. 2485). The current licenses for the TF and NMPS Projects expire on April 30, 2018.

On March 1, 2016, FirstLight filed 13 study reports (and two addendums¹) with FERC as follows:

Study No.	Name
3.2.1	Water Quality Monitoring Study
3.3.4	Evaluate Upstream Passage of American Eel
3.3.6	Impact of Project Operations on Shad Spawning, Spawning Habitat and Egg Deposition in the Area
	of the Northfield Mountain and Turners Falls Projects
3.3.8	Computational Fluid Dynamics Modeling in the Vicinity of the Fishway Entrances and Powerhouse
	Forebays
3.3.9	Two-Dimensional Modeling of the Northfield Mountain Pumped Storage Project Intake/Tailrace
	Channel and Connecticut River Upstream and Downstream of the Intake/Tailrace
3.3.10	Assess Operational Impacts on Emergence of State-Listed Odonates in the Connecticut River
3.3.11	Fish Assemblage Assessment
3.3.12	Evaluate Frequency and Impact of Emergency Water Control Gate Discharge Events and Bypass
	Flume Events on Shortnose Sturgeon Spawning and Rearing Habitat in the Tailrace and Downstream
	from Cabot Station
3.3.20	Ichthyoplankton Entrainment Assessment at the Northfield Mountain Project
3.4.1	Baseline Study of Terrestrial Wildlife and Botanical Resources
3.5.1	Baseline Inventory of Wetland, Riparian and Littoral Habitat in the Turners Falls Impoundment, and

Table 1: Reports filed with FERC on March 1, 2016

Gus Bakas

Director- Massachusetts Hydro FirstLight Power Resources, Inc. 99 Millers Fall Road Northfield, MA 01360 Tel. (413) 422-5915/ Fax (413) 659-4459 E-mail: gus.bakas@na.engie.com

¹ As required by FERC, addendums were filed on Study No. 3.3.2 *Hydraulic Study of Turners Falls Impoundment, Bypass Reach and below Cabot* and Study No. 3.3.18 *Impacts of the Turners Falls Canal Drawdown on Fish Migration and Aquatic Organisms.*

Study No.	Name
	Assessment of Operational Impacts on Special-Status Species
3.6.1	Recreation Use/User Contact Survey
3.6.5	Land Use Inventory

FirstLight held its Study Report meeting on March 16, 2016 and filed its meeting summary on March 31, 2016 per Commission regulations.

Stakeholder comments on the summary were due by April 30, 2016.² FirstLight's response to comments were due within 30 days or by May 30, 2016. Comments were received from the following:

- United States Fish and Wildlife Service (USFWS)
- National Marine Fisheries Service (NMFS)
- Massachusetts Division of Fisheries & Wildlife (MADFW)
- Connecticut River Watershed Council (CRWC)
- The Nature Conservancy (TNC)
- Karl Meyer

The purpose of the comment opportunity following the submission of the meeting summary is to give relicensing participants an opportunity to request modifications to approved studies or propose new studies. 18 C.F.R. § 5.15(c)(4). Such requests must demonstrate good cause and meet the criteria of 18 C.F.R. § 5.15(d) and (e), as appropriate. The majority of the comments received on FirstLight's study reports, however, simply disagreed with study results, or sought additional analysis or data collection not specified by the approved study plans. Where commenters requested modifications to approved studies or appeared to propose new studies, they failed to demonstrate good cause and did not otherwise meet the Commission's required criteria—which set a high bar—for making such requests. As reflected in the attached response matrix, FirstLight has agreed to additional data collection in some instances, and is providing additional and/or corrected data and analysis where warranted. Except where noted, however, FirstLight is not planning to revise or revisit its study reports. Should FirstLight determine, once outstanding studies are completed, that additional analysis is required to evaluate Project effects, it will include such analysis in its amended Final License Application.

As to the eleventh hour comments filed on two studies by CRWC on May 25, 2016, they are out of time and should be disregarded for that reason alone. The CRWC comments also lack merit or are otherwise addressed in this filing. Study No. 3.3.6 should not be repeated, as CRWC requests, for the reasons stated in the attached matrix (*see, e.g.*, FirstLight's response to USFWS-1, USFWS-2). CRWC's comments on Study No. 3.3.20 reflect a misunderstanding of the study. The study is based on the density of organisms and flow into the generation facility; Vernon discharge is not a component of the entrainment estimate, and river flow is never a component in this type of entrainment estimate. The amount of water pumped at Northfield during the study No. 3.3.20 provided in this filing. As CRWC notes, FirstLight has agreed to repeat—and in fact has already begun—data collection for this study in 2016. A comparison of 2015 and 2016 data, including pumping data, will be provided in a 2016 supplemental report. FirstLight disagrees, however, that there was any expectation that this study would include a long-term comparison of operations with previous years, and as CRWC acknowledges, the Commission-approved study plan certainly did not include any such component. To the extent that CRWC's request for historic pumping data to the extent FirstLight deems it to be necessary or relevant to an evaluation of Project effects.

FirstLight is filing this document with FERC electronically. To access the document on FERC's website (http://www.ferc.gov), go to the "eLibrary" link, and enter the docket number, P-1889 or P-2485. FirstLight is also making the document available for download at the following weblink: <u>http://www.northfieldrelicensing.com/Pages/Documents2016.aspx</u>.

In addition to this electronic filing with FERC, a paper copy of the document is available to the public at the Northfield Mountain Visitor Center at 99 Millers Falls Road, Northfield, MA 01360 during regular business hours.

If you have any questions regarding the above, please do not hesitate to contact me. Thank you for your assistance in this matter.

² Because April 30, 2016 fell on a Saturday, the deadline shifted to Monday, May 2, 2016.

Sincerely,

Gus Bakas Attached: Study Report Comments and Responses

TABLE OF CONTENTS

STUDY NO. 3.2.1 WATER QUALITY MONITORING	1
STUDY NO. 3.3.4 EVALUATE UPSTREAM PASSAGE OF AMERICAN EEL	1
STUDY NO. 3.3.6 IMPACT OF PROJECT OPERATIONS ON SHAD SPAWNING, SPAWNING HABITAT AND EGG DEPOSITION IN THE AREA OF THE NORTHFIELD MOUNTAIN AND TURNERS FALLS PROJECTS	2
STUDY NO. 3.3.8 COMPUTATIONAL FLUID DYNAMICS MODELING IN THE VICINITY OF THE FISHWAY ENTRANCES AND POWERHOUSE FOREBAYS	
STUDY NO. 3.3.9 TWO-DIMENSIONAL MODELING OF THE NORTHFIELD MOUNTAIN PUMPED STORAGE PROJECT INTAKE/TAILRACE CHANNEL AND CONNECTICUT RIVER UPSTREAM AND DOWNSTREAM OF THE INTAKE/TAILRACE	20
STUDY NO. 3.3.10 ASSESS OPERATIONAL IMPACTS ON EMERGENCE OF STATE-LISTED Odonates in the Connecticut River	23
STUDY NO. 3.3.11 FISH ASSEMBLAGE ASSESSMENT	
STUDY NO. 3.3.12 EVALUATE FREQUENCY AND IMPACT OF EMERGENCY WATER CONTROL GATE DISCHARGE EVENTS AND BYPASS FLUME EVENTS ON SHORTNOSE STURGEON SPAWNING AND REARING HABITAT IN THE TAILRACE AND DOWNSTREAM FROM CABOT STATION	28
STUDY NO. 3.3.18 IMPACTS OF TURNERS FALLS CANAL DRAWDOWN ON FISH MIGRATION AND AQUATIC ORGANISMS- ADDENDUM	
STUDY NO. 3.3.20 ICHTHYOPLANKTON ENTRAINMENT ASSESSMENT AT THE NORTHFIELD MOUNTAIN PROJECT	
STUDY NO. 3.4.1 BASELINE STUDY OF TERRESTRIAL WILDLIFE AND BOTANICAL RESOURCES	
STUDY NO. 3.5.1 BASELINE INVENTORY OF WETLAND, RIPARIAN AND LITTORAL HABITAT IN THE TURNERS FALLS IMPOUNDMENT, AND ASSESSMENT OF OPERATIONAL IMPACTS ON SPECIAL-STATUS SPECIES	
STUDY NO. 3.6.1 RECREATION USE/USER CONTACT SURVEY.	
STUDY NO. 3.6.5 LAND USE INVENTORY	43

TABLE OF ATTACHMENTS

STUDY NO. 3.3.6 ATTACHMENTS

- Attachment A to Study No. 3.3.6. Table 4.2.3-1A. Minimum, maximum and mean flow in the Turners Falls canal and bypass reach throughout the 2015 shad spawning survey period
- Attachment B to Study No. 3.3.6. Table 4.3-1A. Summary of data used to Assess Effects of Operations on Shad Spawning (Obs = observer).
- Attachment C to Study No. 3.3.6. Figure 4.1-2A. Cabot Station, Station No. 1 and Turners Falls Dam Discharge (cfs) throughout the 2015 shad spawning survey period.
- Attachment D of Study No. 3.3.6. Figure 4.3.1-1A: Histogram of log-transformed (ln(x)) splash counts before and after changes in Cabot Station generation.
- Attachment E of Study No. 3.3.6 Survey location, date and time of spawning observations during the 2015 shad spawning study.
- Attachment F of Study No. 3.3.6. Splash counts by photoperiod quantiles for data collected during 2015 shad spawning surveys

Attachment G of Study No. 3.3.6. Results for paired t-test by operational scenario

STUDY 3.3.11 ATTACHMENTS

Attachment A to Study 3.3.11. Detailed Sampling Data

- Attachment B of Study 3.3.11. Good and poor QHEI habitat attributes for the Connecticut River sampled by MBI during 2015
- Attachment C of Study 3.3.11. Length and Weight and Length Frequency Data for Fish Sampled in The Turners Falls Project

STUDY 3.3.12 ATTACHMENTS

Attachment A to Study 3.3.12. Vermont Stream Geomorphic Assessment. Particle Entrainment and Transport Attachment B to Study 3.3.12. Relation between Grain diameter for Entrainment and shear stress using Shields relations

STUDY 3.3.20 ATTACHMENTS

- Attachment A to Study 3.3.20. Table 4.1-2. Northfield Mountain Project American Shad Ichthyoplankton Entrainment Densities.
- Attachment B to Study 3.3.20. Table 4.2-1. Northfield Mountain Project American Shad Ichthyoplankton Densities in Offshore Samples
- Attachment C to Study 3.3.20. The total time of pumping with 1, 2, 3 & 4 pumps, by week, from May 15 to July 15 for 2015.
- Attachment D to Study 3.3.20 The total time by pump for the nights in 2015 when samples were collected with more than one pump operating.

STUDY 3.4.1 ATTACHMENTS

Attachment A to Study 3.4.1 Turners Falls Study Area Plant List

STUDY 3.5.1 ATTACHMENTS

- Attachment A to Study No. 3.5.1. Figure 4.2.2-1 Submerged Aquatic Vegetation Mapping
- Attachment B to Study No. 3.5.1. Rainbow Beach and North Bank Survey Transects

Attachment C to Study No. 3.5.1. RTE Plant RTK Survey Data collected in 2015

STUDY 3.6.1 ATTACHMENTS

Attachment A to Study 3.6.1. Table 4.1.3-1: Estimated Use of Surveyed Recreation Sites by Season¹

- Attachment A to Study 3.6.1 (Redline Version). Table 4.1.3-1: Estimated Use of Surveyed Recreation Sites by Season¹
- Attachment B to Study 3.6.1. Table 4.2-3: Total Number of Times a Recreational Survey Respondent indicated they had Participated in Certain Recreational Activities at the Northfield Mountain and Turners Falls Projects.
- Attachment B to Study 3.6.1 (Redline Version). Table 4.2-3: Total Number of Times a Recreational Survey Respondent indicated they had Participated in Certain Recreational Activities at the Northfield Mountain and Turners Falls Projects.

STUDY 3.6.5 ATTACHMENTS

Attachment A to Study 3.6.5 Revised Figure 4.4-1. Licensee Owned Lands

Study No. 3.2.1 Water Quality Monitoring

Commenter	Comment	Responses
CRWC-1	TransCanada's Study 6 identified a high temperature-low flow period and looked at results closely during this period. Study 6 also summarized results by month at each site (max, min, mean, and median). FirstLight's study 3.2.1 did not do this, which would have been useful.	CRWC's comment is inaccurate. In its study repoincluding periods of low flow-high temperatures. in the report for the impoundment during low flow reach for low flow in August – September (Figures downstream of Cabot Station (Figure 3.4-1a, 1b, 1 the temperature rate of change for low flow and hi 3.4.5-7b. Monthly trends in DO and temperature a G. A summary of monthly results (min, max, average dissolved oxygen as follows: Temperature: Figure sat: Figure 3.3.1-1 and 3.3.1-2, respectively, & Tal Monthly trends compared against operations data of the second s
CRWC-2	The FirstLight study was not conducted in a way that would evaluate surface warming of the impoundment as a project effect. Moreover, the impoundment location had the deepest logger.	CRWC's assertion that FL did not conduct the studinaccurate. Data were collected to evaluate the im collected at 3 impoundment locations (Sites 2, 6 a water column was generally well-mixed and did not the bottom of the profile within 0.9°C. As stated in gradually warming throughout the spring and sum occurred during August and early September. The During this day, Site 7 temperatures only varied 0. upstream locations on this day (24.9°C throughout the impoundment, we conclude there is no Project
CRWC-3	FirstLight's loggers did not identify water quality problems in the bypass region. It would have been impossible to place loggers in sections that become dry during the season, and CRWC thinks there are locations in the bypass that violate water quality standards for temperature during parts of the summer due to partial or complete dewatering.	CRWC asserts that there are locations in the bypas indicate otherwise. Water quality monitoring equi which were located in a shallow riffle less than 2 f water quality standards were met.

Study No. 3.3.4 Evaluate Upstream Passage of American Eel

Commenter	Comment	Responses
USFWS-1	4.2 Environmental and Operational Conditions FL discussed project generation, but did not present any analysis of a correlation between generation and eel collection rate. FL also did not present any analysis of the effect that spill flows may have on eel collection rate, but made an unsupported statement that "Data suggests that spill at the Turners Falls Dam does not affect collection rate at the traps."	Generation varied over the course of eel collection estimate could be achieved. We agree with the US generation over a two to three day period would no
	Additional analysis of the collected data is needed, although since collections of eels from the traps were done every 2 or 3 days, it is not clear that assessing average conditions over the trapping period will provide meaningful results. In addition, we note that, while average daily river flow may be a relevant metric for large-scale movement cues for juvenile eels, it is not as relevant to near field migration and attraction to the temporary eelways and collection devices.	No statistical test was used to assess correlation be in which spill occurred during the study period. He (Figure 4.2-6) such that trends could be visualized
MADFW-1	The Division believes that some additional analysis of the collected data is needed as FL discusses Project generation but does not present any analysis of a correlation between generation and eel collection rate. FL also does not present any analysis of the effect that spill flows may have on eel collection rate, but makes an unsupported statement that " <i>spill at the Turners Falls Dam does not affect collection rate at the traps</i> ."	See USFWS-1.

ort filing, FL evaluated temperatures throughout the entire study period, More specifically, a high temperature-low flow period was discussed v in August – early September (Figures 3.4.1-1a, 1b & 1c), the bypass es 3.4.2-4a, 4b, 4c) power canal (Figures 3.4.3-1a, 1b, 1c) and lc, Figure 3.4.5-1 through Figure 3.4.5-7b). Furthermore, FL discussed igh temperature periods in Figures 3.4.5-5 (monthly) through Figure against operation flow can also be observed in the appendices E, F and

e) by each month was included in the report for water temperature and 2.3.3.2-1, 3.3.2-2, 3.3.2-3 & Table 3.3.2-1, and DO concentration and % ble 3.3.1-1

were also included in Appendix E, F and G.

dy in a way to evaluate the impact of the Project on surface warming is apact of the Project on temperature. DO and temperature profiles were and 7-see figures and table discussed in section 3.2 of the report). The not stratify so surface water was not a concern as it was close in value to in the report, "Water temperatures followed a typical seasonal pattern, mer. The highest measured temperatures at the three profile locations is maximum temperature was 25.8°C measured at Site 7 on August 18. .3°C from top to bottom. Water temperatures were slightly cooler at t the water column at Site 2)." Because of the lack of stratification in t effect on temperature.

ss channel that violate water quality standards. The study findings ipment was placed at two locations in the bypass reach (Sites 8 and 9) ft deep during low flow conditions. Throughout the sampling duration,

n and given the temporal scale of eel collection, no valid correlation SFWS that assessing eel collection rate in correlation with average ot provide meaningful results; therefore the analysis was not

etween spill and eel collection rate due to the low number of instances owever, the eel collection rate was plotted in conjunction with spill l.

Commenter	Comment	Responses
CRWC-1	Section 4.2 Environmental and Operational Conditions The report states that there is no correlation between river flow, as measured at the Montague USGS gage, and the rate of eel collections. There is no information provided as to the means of calculating the rate of eel collections or the period of time of collection that is used for the evaluation	Eel collection rate was determined by the number occurred between July 9 and November 2, 2015. S (2) and three (3) days.
	A correlation between discharge at Montague and the rate of eel captures is invalid, as most of the eels collected (88%) were at the spillway ladder and 87% of the time when eels were captured at the spillway ladder, there was only minimum flow (125 cfs) in the bypass reach. Eels in the bypass reach are not affected by river flow as measured at the Montague gage, but by generation at Station #1 and spill.	We disagree as river discharge may affect the mov Therefore those data were included in the analysis 4.2-5 and 4.2-6, respectively.
	The report also states that, "Data suggests that spill at the Turners Falls Dam does not affect collection rate at the traps." There is limited data to assess the effect of spill on eel captures at the spillway trap, where spill affects collections, but what data there are points to the opposite conclusion. During the period of trapping, there was spill from July 10 to 13 (mean 1,245 cfs), July 22 (1,058 cfs), and beginning on October 1st and lasting (except for one day) for the entire month. During the initial period of spill, 119 eels were collected at the spillway trap. A large number of eels was collected around June 22, but without daily collections it is impossible to determine if eels came into the ladder before, after, or during spill. For the month of October, only 10 eels were collected after the start of significant spill (Oct. 2), and those eels could have already been in the ladder prior to spill. Although eels may be able to enter the spillway ladder when spill is around 1,000 cubic feet per second (cfs), it is likely that spill greater than several thousand cfs prohibits eels from entering the spillway ladder as spill plunges into the bypass at the spillway ladders entrance, creating turbulent conditions with a large amount of entrained air.	We agree that the collection data relative to spill w summer months when spill is seasonally low. The upstream migration in the Connecticut River. Figu began to decrease beginning in mid-September dur migration period which is associated with the time October is an unlikely contributor to the collection begun to slow.

Study No. 3.3.6 Impact of Project Operations on Shad Spawning, Spawning Habitat and Egg Deposition in the Area of the Northfield Mountain and Turners Falls Projects

Commenter	Comment	Responses
USFWS-1	3.2.3 Canal/Bypass The bypass reach surveys were limited to only three survey locations. Although this was called for in the approved study plan, it is not clear why areas that were safely accessed for the instream flow study transect selections-near the mouth of the Falls River, along the river left side downstream from the spillway ladder, and the area on river left between the Turners Falls Road bridge and Station No. 1-were not assessed as part of this study.	The approved RSP states (Task 4, page 9) "The enconcerns at night. Two locations (Rock Dam and S channel for shad spawning." Other locations were conducted at night and safety was a major concern
	The study provides extremely limited data that are insufficient to assess the impacts of any bypass flow changes on shad spawning, but also are inadequate to characterize the location, frequency, duration or number of shad attempting to spawn in that reach. In lieu of adequate data, the Service will rely on the results of the instream flow study to discern the relationships between bypass flows and shad spawning.	The shad spawning study was a qualitative assessm will quantify the effects of Project flows on aquatic community, including diadromous fish species. Th and other models to evaluate the impact of current area. The shad spawning study provided informati of Cabot Station. Transects for the IFIM study bel collect habitat data (e.g., depth, velocity, water elev simulate shad spawning habitat suitability under a included in the IFIM study report to be filed with F assessment of the relationship between shad spawn

of eel collected per sampling event. Forty (40) sampling events Sampling time between collection events typically ranged between two

vement of eel into the bypass reach and the rate of that movement. S. Generation data and spill data were presented in the report in Figures

were limited. Much of the monitoring period occurred during the drier monitoring period was selected to match the seasonal pattern of eel ure 4.2-6 plots eel collection and spill at the dam. The collection rate uring a time of no spill. This trend was attributed to the end of the e of year and decreasing water temperatures. The occurrence of spill in n rate during this late season period because migration had already

tire length of the bypass channel will not be walked due to safety Station No. 1) having easier access will be visited in the bypass not visited because, unlike the instream flow study, the work was .

ment of shad spawning and generation changes while the IFIM study ic habitat suitability in the Connecticut River for the aquatic nese data will then be used in conjunction with hydrologic, operational and potential future Project operations on aquatic habitat in the study ion on the locations of the primary shad spawning areas downstream low Cabot were intentionally located to include shad spawning areas to evation data, substrate, etc.). The PHABSIM model will be used to range of operating conditions and operations; these data will be FERC on October 14, 2016 and will allow for a more complete ning habitat and Project operations.

Commenter	Comment	Responses
USFWS-2	3.3.3 Habitat Duration Curves	
	Spawning areas were classified as "exposed" when the wetted spawning area of a location was "less than the median water surface elevation (WSEL) for that location." However, there are a number of problems with this analysis.	Detailed methods for data analyses were not incl to be conducted to determine these types of relat provide the needed information to discern relation
	First, the term "exposed" is not appropriate for determining the impact of flow changes on spawning habitat. Spawning habitat for shad is found in moderate to deep water, therefore changes in that habitat can be significant and affect spawning without in any way being "exposed," which infers very shallow or dry conditions. In addition, using the median WSEL for each spawning site as a metric for assessing habitat impacts is not appropriate. While each site may provide suitable spawning conditions at certain flows, habitat may not be unsuitable at other flows. Also, even if there is habitat at certain flows, optimal habitat conditions may not have been available at any flows observed in 2015. In addition, more or less suitable habitat may be available in other years. Using median flow as a benchmark for providing some level of quality habitat, and then defining WSELs below median flow as not suitable, and above median flow as quality habitat, is not supportable.	agree that the assessment in this study needs to
	Instead, the assessment should be redone to assess the impacts of flow fluctuations on spawning habitat in relation to the range and frequency of river depths and velocities that were actually observed during spawning in 2015 and may be available based on long-term hydrologic data for the shad spawning period. This concern is addressed further in our comments on section 4.3.2.	
USFWS-3	3.3.4 Statistical Analysis	
	Statistical significance was set at p-values of less than 0.05 (report pg. 3-4). The need to design the FERC studies to be able to test for significant differences of 0.05 had not been proposed or established. If the intention was to statistically design this study to meet this level of rigor, it would have required conducting a power analysis in its design and very likely substantially more sampling. This was not done. Individual models were developed to explore the effects of generation, river flow, etc. (report pg. 3-4). There is no mention of what method criteria for model fit, e.g., AIC method, was used.	FL agrees that a power analysis is an appropriate without a pilot study or existing information, an The significant result of the Durbin-Watson test than those recorded further apart in time. In other any model developed to explore project effects w influence the number of splashes. Given this, an
USFWS-4	4.1 Historic Operations and Flow Data	
	On page 4-1, it notes that 55 percent of the changes in generation from Cabot Station were in the range of $+/-10$ MW (2,630 cfs) and 29 percent were in the range of $+/-20$ MW (5,220 cfs). These discharge changes cover approximately 84 percent of the total flow changes during the examined time period, and were chosen as the test scenarios to evaluate impacts of generation changes. Greater fluctuations (those >20MW) that occur 16 percent of the time are likely to result in greater impacts and represent a significant portion of conditions during the shad spawning period.	The RSP states " <i>Based on historic generation da</i> <i>by 20 Mw (4,576 cfs)</i> changes." The specific nu Because historically most adjustments were in th performed based on these same ranges.
	Figure 4.1-2 illustrates instantaneous flow in relation to spawning survey dates and when surveys were conducted in relation to the 18,000 cfs hydraulic capacity of Cabot Station. It therefore also identifies periods when total river flows exceeded that level (generation plus spill flow from Turners Falls Dam). Substantial variability exists in the time series relative to the relationships of spawning, project-controlled flows and flows exceeding project capacity. An appropriate statistical method should examine this covariate (flow outside project effect, flow within project effect), with a structure that would examine how they influence observed spawning data.	The approved RSP did not call out specific statis warranted to meet the study objectives. Further, flow and operating conditions.
USFWS-5	4.2 Spawning Surveys	
	We note that due to weather, flow conditions and equipment failure, all or some of the sampling on 7 sampling days out of the planned 21 days was cancelled. These down days reduced the available data upon which conclusions can be drawn.	Table 4.2-1 in the study report summarizes field sampling. FL collected sufficient data to meet the
USFWS-6	4.2.3 Canal/Bypass Reach	
	Fourteen days of surveys of the bypass reach and canal were conducted. Spawning was actually only observed at each location on one date, June 18, but no information on canal and bypass flows during the survey on June 18 or on the other 13 nights is provided. Data on the actual canal and bypass reach flows during all 14 survey periods should be provided.	The canal flow on the night spawning was obser <u>Study 3.3.6 Attachment A</u> is Table 4.2.3-1A (a r mean, and maximum canal and bypass flows that bypass flow was approximately 1,015 cfs on Jur
USFWS-7	4.3.1 Spawning Activity	

luded in the RSP; however, the RSP indicated that modeling would need tionships. As indicated in the response to USFWS-1, the IFIM study will onships between flows and shad spawning habitat. Thus, FL does not be redone.

e method to determine the number of samples to take a priori; however, appropriate power analysis cannot be performed.

indicated that splash counts recorded closer in time were more similar er words, splash counts were shown to vary with time, thus results from were not valid since the times at which the measurements were recorded a AIC analysis was not necessary.

ata at Cabot Station, most changes will be +/-10 Mw (2,288 fs) followed umber of Cabot units added or reduced was not stipulated in the RSP. he 10-20 MW range, constituting 84% of the time, the study was

stical methods to assess the data. The suggested analysis is not the IFIM study will examine shad spawning suitability under a range of

l activities and provides reasons for early termination or postponement of ne study objectives.

rved was provided in the text on page 4-16 of the report. Attached as revision to Table 4.2.3-1 of the study report). It includes the minimum, at occurred during the 14 survey periods based on hourly data. The ne 18 at 22:15.

Commenter	Comment	Responses
	Spawning activity was assessed using splash counts, which was reported as average splash counts. Range and measures of variance should be reported, along with the mean splash counts.	Average was simply calculated as (Observer 1 co Table 4.3-1A (a revision to Table 4.3-1 of the stu observers.
	Changes in project discharge affect water velocity. Data on changes in water velocity were not reported, but should be reported and analyzed for changes in splash count relative to direct and relative change in velocity.	
	Table 4.3-1 of the report provides flow data on the paired before/after unit change tests and identifies splash counts, Cabot generation before and after flow changes, time of before/after splash counts, changes in spawning area before and after unit changes and a single instantaneous USGS gage reading.	Velocity data were reported in Tables 4.2.1-2 and velocity measurements recorded by field crews in the spatial relationship between water velocity an from the IFIM model. Because transects for the I the PHABSIM model output will be used to simul conditions and flows in the IFIM Study Report to
	The splash count data should be presented and analyzed based on proportional change in discharge. The operational effects of relative change should be evaluated. It is unclear as written whether the individual-based models addressed this question. Models were developed to explore the effects of generation, river flow, etc., but proportional values were not reported or assessed.	The approved RSP did not specify data analysis r believe this additional analysis is warranted to me test, that splash counts are dependent on time.
	Data should also be provided on Cabot unit discharge, Station #1 discharge, and spill flows over time during the study periods to understand project effects versus natural or Deerfield River flow effects, and the frequency and magnitude of flow fluctuations during the shad spawning period in a "typical" year.	Discharge data for Cabot Station, Station No. 1 at <u>Study 3.3.6 Attachment C</u> , Figure 4.1-2A.
USEWS-7 (cont)	131 Spawning Activity (cont)	
	The Service and the National Marine Fisheries Service have reviewed the data in Table 4.3-1 of the report and found a number of problems with the data in the table and the evaluation that was conducted.	Attached as <u>Study 3.3.6 Attachment B</u> is Table 4. corrected before and after USGS gage flows.
	The USGS flow gage data should be reported with the instantaneous gage data for both "before" and after" splash counts and not one single reading.	
	The USGS gage data reported in Table 4.3-1 of the report for all June samples do not correspond to actual USGS gage readings. This table needs to be corrected.	
	Actual flows before and after unit changes did not, in most instances, reflect the planned and identified changes in Cabot generation (examples were provided, but are not repeated herein).	
	The net result of the above problems is that the study provides extremely limited information to evaluate the impacts of flow changes on shad spawning. The causes for the problems noted above are not clear, but appear to be two-fold:	These concerns are noted; however, the study wa occurred after the Cabot generation was manipula minutes to 1 hour). Counts were conducted by bi
	Failure to wait long enough after the generation change to conduct the "after" sample such that the flow change from Cabot Station had not yet stabilized at the shad spawning site being assessed. The fact that the May 28 splash counts noted above had the longest time between before and after samples (1 hour 22 minutes) and had "after" flows that were the closest to reflecting the change in generation supports this conclusion. Even with that time delay, however, flows during the "after" count did not fully reflect a full Cabot unit flow change. While the study plan proposed a delay between "before" and "after" counts of 20 minutes to one hour, the intention was to wait until flows stabilized. The basis for the 20 minutes to 1 hour proposal is unknown, but clearly that delay time was insufficient. The "after" count for all but one other generation change test was conducted 30 to 52 minutes after the generation change	limits, the biologists had to rely on their best judg continued to change after the counts had commen retrospection of being able to look at future gage (counts decrease with time since sunset), increasi discern project effects.

bunt + Observer 2 count)/2. Attached as <u>Study 3.3.6 Attachment B</u> is udy report). It includes the actual before and after counts of both

1 4.2.2-1 and depicted in Figure 4.3.2.-2 of the report. As surface lear the river banks are not representative of the entire spawning area, and shad spawning will be more comprehensively assessed using data IFIM study were intentionally located to include shad spawning areas, alate shad spawning habitat suitability under a range of operating to be filed with FERC on October 14, 2016.

methods for assessing proportional or relative changes and FL does not eet study objectives as it was determined, through the Durbin-Watson

nd Turners Falls Dam during the 2015 survey period are attached as

.3-1A (a revision to Table 4.3-1 of the study report). It includes the

as conducted in accordance with the approved RSP. All counts that ated occurred within the prescribed time limits set in the study plan (20 iologists on the river in a boat after dark. Besides the prescribed time gment to determine when flows stabilized. In some cases, flows need; however the biologists made real time decisions without the data. Considering the influence of time on daily spawning activity ing the duration between before and after counts would not help to

Commenter	Comment	Responses
	The later June splash count events were conducted at flows too high to provide meaningful information on impacts of discharge changes due to baseline high flows that would mask unit changes, and unit changes done at full capacity, where total river flow exceeds project capacity.	The RSP specified conducting surveys through the above average in June. Flow manipulation was be stakeholders agreed should be conducted simultar
	This study, therefore, provides little data upon which to base conclusions on unit change impacts. The test scenarios in the approved study plan were expected to demonstrate the impacts to shad spawning behavior and habitat in response to one or two units changes (on or off), or increments of 2,288 cfs or 4,576 cfs. No results were obtained that met this study purpose.	FL disagrees that no results were obtained to dem- two units changes. While it may have been expect analysis indicates that time, rather than increasing splash counts. FL does not agree that it is appropr
	This is a critical matter, as flows fluctuate at Cabot station almost daily at magnitudes of one or more units. In fact, while the study plan called for evaluation of one or two unit changes, review of the gage data for May 26 to May 29 identifies that actual station operations had far more dramatic changes in discharge during the study period. The splash count sampling regime, even if it had been successful in evaluating one or two unit changes, would not have assessed the more dramatic flow changes that actually occurred during the period of study, as evidenced by USGS flow gage data inserted below as Figure 1 (not included herein). As we noted in section 4.1 above, even though unit changes greater than one or two unit changes do not occur as frequently, when they do occur, changes in flow can be dramatic. For illustrative purposes, during a sample period from May/June 2014, USGS gage data also identify rapid, dramatic changes on flow releases beyond one or two units, as depicted in Figure 2 (not included herein) inserted below.	
USFWS-8	4.3.2 Spawning Habitat	
	As noted above, the premise that the dewatering of the spawning areas is an appropriate metric for assessing impacts to spawning habitat is flawed. The sites, both those where spawning was observed, and historically used sites where spawning was not observed during the study period in 2015, represent spawning habitat. As such, impacts of project operations are on spawning at these sites and habitat suitability for spawning. Since shad spawn in moderate to deep water, the impact of different river flows and generation changes would be on depth and velocities and the related impacts on the suitability of used and unused spawning sites. The field studies downstream from Turners Falls in 2015 identified that spawning occurred at depths between 3.3 and 16 feet and water velocities between 0.1 and 2.8 feet per second. Dewatering would be an appropriate criterion for impacts to egg deposition areas, but the location of egg deposition was not assessed and these areas would likely be downstream from the spawning sites.	Detailed methods for data analyses were not inclu study (Study No. 3.3.1) will provide the needed in habitat suitability. The report for Study No. 3.3.1
	Furthermore, the analysis appears to have used the hydraulic model to evaluate habitat conditions at each spawning site. However, the range of flows evaluated were the flows observed during this specific 2015 study period. Since the spawning study did not span the entire 2015 shad spawning period, and 2015 represented only one year's flow conditions, the limited time frame and associated river flows are not representative of flow conditions shad will likely experience over the course of the next license period. Flow impacts should be assessed using the range of flows and flow frequencies from the extended hydrologic record.	Assessing impacts at hypothetical flows other that above, the IFIM study (Study No. 3.3.1) is an app between flows (typical, as well as extreme or rare will be filed with FERC on October 14, 2016.
USFWS-9	5. Discussion: Spawning Locations	
	Only habitat in active spawning areas was assessed. As noted in the report, spawning could have occurred at other times than on surveyed dates, and other historically used spawning sites may provide quality spawning habitat under different flow conditions or in different years. It is quite possible that the river flow or project operation conditions in 2015 were not conducive to or precluded spawning at some of these sites and that spawning, and, in tum, the impacts from flow fluctuations at those sites may occur in other years.	The RSP did not require data collection in areas w prompted data collection. Transects for the IFIM s observations of shad spawning occurred in the 197 USFWS). Shad spawning habitat suitability at son and subsequently discussed in the amended Final
	As such, impacts of flow changes on the suitability of spawning habitat should be assessed at all identified spawning sites whether spawning was observed at these sites during the 2015 study or not.	
USFWS-10	5. Discussion: Spawning Habitat	
	The report references the maximum ranges of observed water surface elevation (WSE) changes over the entire season and during the study period itself. The report should include the information on the maximum and minimum elevations and elevation changes that were observed at each used and unused spawning site.	Minimum, maximum and median WSEL data for Appendices A and B in the Study Report. The app
	The first paragraph (carryover from the previous page) on page 5-30 of the study report supports the statement we made in section 4.3.2 above regarding spawning versus egg deposition habitat. It raises, however, the issue that eggs may be deposited in areas	The study objectives in the approved RSP did not was to identify and assess impacts to shad spawni

e end of June. Inflow is beyond the control of FL and was typically sing conducted as required for other relicensing studies that neously.

onstrate the impacts to shad spawning behavior in response to one or ted that splash counts would be influenced by a generation change, our g or decreasing generation by 1 or 2 units, has a significant effect on iate to dismiss results simply because they were "unexpected".

ided in the RSP. As indicated in the response to USFWS-1, the IFIM information to discern relationships between flows and shad spawning will be filed with FERC on October 14, 2016.

n those observed in the field is a modeling exercise. As indicated ropriate tool to provide the needed information to discern relationships conditions) and shad spawning habitat. The report for Study No. 3.3.1

where no spawning was observed; rather, observations of shad spawning study were intentionally sited in, or in proximity to, the areas where 70s (transects were selected in consultation with stakeholders including ne of the historical spawning areas will be assessed in the IFIM study, License Application.

each of the spawning sites identified in 2015 are included in proved RSP did not require analysis of unused spawning areas.

require locating areas of egg deposition, rather the focus of the study ng habitat and activity.

Commenter	Comment	Responses
	downstream from the spawning sites that may be vulnerable to dewatering. There was no assessment of which locations downstream from the spawning sites could be egg deposition areas or if these areas are impacted by flow fluctuations (shoreline or island shoals).	
	The second paragraph on pg. 5-30 of the study report states "Cabot generation and effects on downstream habitats in terms of WSEL velocity and depth <u>was determined to be positive.</u> such that" The statement that Cabot generation has a 'positive effect" should be deleted. It is not supported by the data, as the same section reports that measures of velocity were not appropriately measured to determine an effect. Water velocity is a Habitat Suitability Index variable and Cabot Station discharge would influence that variable, therefore without velocity being assessed, one cannot say whether generation is positive or not. There are data on unit changes and percent change in spawning splash counts that would strongly suggest that generation changes (both up and down) negatively affected spawning behavior and may be tied to changes in habitat variables like depth and velocity. In addition, Cabot generation is only half of the operational effect. Turning off Cabot Station units during the spawning period, which occurs 38 percent of the time, may reasonably be considered a negative impact, as noted earlier.	The use of "positive" was not intended to mean g variables increase concurrently. In other words, a spawning areas, although not necessarily to the sa
	This section reiterates a statement in the Results section that photoperiod may be a more critical factor influencing spawning activity, and discounts impacts of generation flow fluctuations, since spawning activity decreased whether generation flows increased or decreased. This conclusion is based in part on the June 9 data of "before" and "after" samples when there were no generation changes, but when there was a 40 percent change in mean splashes. A single date of sampling is insufficient data to base a conclusion that flow changes matter less than the timing of the sampling. We note that in Ross et al. (1993) spawning splash counts are seemingly normally distributed between 2000 and 0100 hours.	As depicted in Figure 4.3.1-3 of the study report, single sampling date. Rather the Phase 1 counts, in the photoperiod analysis. The USFWS cites th 2000-0100 hours; however, as depicted in <u>Study</u> photoperiod reaches 14.9 hours and as time since
USFWS_11	5 Discussion: Shad Snawning in TEL	
USF WS-11	The report provides an incomplete assessment of the Stebbins Island area, although there appears to be a means to obtain data from FL's other studies to properly expand the amount of suitable spawning habitat around Stebbins Island. The importance of this single identified spawning habitat area raises this area's importance and raises the need for clearly quantifying habitat changes for shad in that area.	The USFWS did not provide any explanation or j The study was conducted in accordance with the TransCanada conducted an IFIM study in the rea assess the relationship between flows and shad sp
USFWS-12	Appendix A	
	Appendix A presents a series of maps of "Wetted Area of Shad Spawning Sites in Downstream Reach and TFI." As stated above, "wetted" is not an appropriate metric for assessing impacts to shad spawning habitat. These maps should be redone to depict the areal extent of suitable and unsuitable spawning habitat at various WSEs expected across the shad spawning season, based on long-term flow records and application of minimum depth criteria for shad spawning at that site (based on study site specific data: 3.3 feet at sites downstream from Cabot Station and 6.8 feet at the upper TFI site).	As noted above, FL will be assessing the impact Study No. 3.3.1 IFIM study. FL disagrees there
USFWS-13	Service Recommendation	
	As noted above, additional and alternative analyses of the data are needed and should be conducted by FL. However, our overall assessment of this study is that it provides insufficient data to address the central questions of impact of generation flow changes at Cabot Station on shad spawning behavior and shad habitat. There should be some information generated from the Instream Flow Study to assess flows versus shad spawning habitat, and we will review the findings of that study in light of the outstanding questions that remain on this issue. The Instream Flow Study may provide enough information to preclude the need for a repeat of the spawning behavior/flow fluctuation study, but it only addresses habitat and not behavior, therefore that is uncertain.	Sufficient data were collected to address each of should be repeated. The areas used for shad spaw visual and aural surveys under a range of flow co Our assessment indicated that splash counts were increased or decreased, the after counts were alw later time.
	A repeat of the spawning behavior study, even if warranted, could not be conducted in 2016, given the timing of report filing, comments and a FERC ruling on additional studies. Therefore, while we believe that there is a good chance a repeat of this study will be needed, we are withholding such a request pending the receipt and review of the IFIM study report. We acknowledge that if a repeat of the study is conducted, it would need to be done in 2017.	As noted above, the relationship of flows and sha 3.3.1 (IFIM).
NMFS-1	Spawning Surveys	
	Section 3.2 of the report contains a narrative which describes where the surveys occurred. However, it does not clearly explain the	The RSP did not require recording launch sites, b

good. Rather, "positive" was meant to refer to the observation that both as generation increased, so did depth and velocity at the downstream same degree.

, the statement about the influence of photoperiod was not based on a when no intentional changes to generation occurred, were also included nat Ross et al. (1993) reported normally distributed counts between <u>3.3.6 Attachment F</u>, 2015 count data exhibit decreasing trends once the e sunset increases.

justification for deeming the Stebbins Island assessment incomplete. RSP and shad spawning was observed in the vicinity of Stebbins Island. ach below Vernon Dam, which includes the Stebbins Island area, to pawning habitat.

of Project operations on shad spawning habitat suitability as part of the would be any value in repeating the study.

the objectives defined in the RSP, therefore, FL disagrees that the study vning were identified and defined geospatially based on night-time onditions, and physical habitat parameters were measured and reported. e dependent on time, such that regardless of whether generation vays lower than the before counts because the after counts occurred at a

ad spawning habitat suitability will be assessed as part of the Study No.

boat tracks, or the amount of time spent in each location. An estimate of

Commenter	Comment	Responses
	methodology to identify surface spawning activities. The report should include information on launch sites, track taken by the vessel for each sampling event and the amount of time spent in each location. If GPS tracking of the boat surveys occurred, these data should be presented in map form for each night a survey occurred.	the amount of time spent at each location where sp crew typically began 15-minute splash counts just approximately 15 minutes after the "after" count b
NMFS-2	Project Operation and Areas of Spawning	
	One of the objectives of the study was to quantify effects (e.g. water velocity, depths, inundation, exposure of habitats) of project operation on identified spawning areas for a range of conditions. The analysis, in Section 3.3.2, that calculated the wetted surface area at the time of the survey is not relevant for shad spawning. In order to assess habitat impacts, FirstLight should further analyze depths and velocities that are suitable for shad spawning (Hightower <i>et al.</i> , 2012, Stier and Crance, 1985) under different operating conditions at each identified spawning area. Section 3.3.3 discusses maximum, minimum and median Water Surface Elevations (WSEL) which are not appropriate metrics for assessing whether habitat is suitable for spawning shad. The study report neither discusses nor supports why WSELs above the median provide suitable habitat and WSELs below the median are not suitable.	As indicated in the response to USFWS-1, the rela and substrate) under various Project operations at t IFIM Study.
	Section 4.3.2 of the report does not reference any of the Habitat Suitability Index (HSI) values that were established as part of Relicensing Study 3.3.1 whereby habitat suitability curves were developed for spawning American shad using data from Hightower <i>et al.</i> , 2012. The HSI data used in Relicensing Study 3.3.1 indicate that velocities in excess of 5.6 feet/second have an HSI value of zero. The report makes no mention of the high velocities shown in the plots for spawning sites 2, 5, 9, 10, 17 and 18 shown in Figure 4.3.2-2. These data suggest that six of the identified spawning sites have mean channel velocities that are unsuitable for spawning under a wide range of total production scenarios. The consistently high velocities at these locations should be discussed in the report in terms of how project operations could be impacting spawning habitat. The report does not analyze or discuss to what degree, if any, the measured surface velocities presented in Table 4.2.1-2 correspond with the estimated mean channel velocities values in Figures 4.3.2-2.	Mean channel velocity does not represent the actual spawning, fish can find relief in areas of lower velo- lower than the mean channel velocities, which wou PHABSIM model will account for spatial variabili habitat locations (depth, velocity, substrate) and variability
	The report indicates there was a change in depth and velocities due to changes in project operations for spawning locations in the downstream reach; however these changes are not quantified or discussed in terms of suitable shad spawning habitat. In order to meet the identified study goals and objectives, further analysis should be conducted for this study. That analysis should examine depths and velocities at each spawning site cross section and quantify changes from project operations in terms of suitable shad spawning habitat based on the data in Hightower <i>et al.</i> , 2012 and Stier and Crance, 1985	
	The report states on page 5-30 "[t]he relationship between Cabot generation and effects on downstream habitats in terms of WSEL velocity and depth was determined to be positive,". This sentence should be stricken from the report as it cannot be supported. While we agree that all plots in Figures 4.3.2-1, 4.3.1-2 and 4.3.2-3 show that with increased generation, there is a general increase in WSEL, velocity and depth, a great deal of variability occurs for any given total Turners Falls production value. As a result, this statement cannot be supported.	See USFWS-10.
NMFS-3	Project Operation and Spawning Activity	
	In our review of the study report, we found a reporting issue with Table 4.3-1 under the column header 'Instantaneous River Flow Montague Gage USGS Gage (cfs). We obtained 15-minute discharge values from USGS Gage # 01100500 Connecticut River at Montague, MA from May 22, 2015 to May 26, 2015. The reported discharge values in column two of Table 4.3-1 for the May observations agree with the values we obtained (highlighted in green in Table 1), however, for all reported values for observations made in June, the numbers reported in column two of the table appear to be Cabot Station total output discharge values (highlighted in brown in Table 1) (Mark Wamser, personal correspondence). Splash count data should be presented and analyzed based on proportional change in discharge.	Attached as <u>Study 3.3.6 Attachment B</u> is Table 4.3 transcription error which has been revised to include
	Based the information provided in the study report, we do not agree that FirstLight can conclude project operations are not having an effect on shad spawning. The official USGS reported discharge values indicate the before and after observations made on June 10, June10 & 11, and June 16 were all made at river flows greater than 18,000 cfs (highlighted in light blue in Table 1) which are flows outside Project effects as is clearly depicted in Figure 4.1-2. These three paired observations should not be included in the analysis because turning units on or off at Cabot Station cannot have an observable impact on discharge at spawning sites 16, 17 and 18 at these flows. In addition, operational changes being made at flows over 18,000 cfs are not a likely operational scenario and the ability to detect the impacts of operational changes is very limited, calling into question the usefulness of these three pair observations	This comment is noted; however, the PHABSIM n relationship between shad spawning habitat variab spawning sites. The report for Study No. 3.3.1 will

pawning was observed can be discerned from Table 4.3-1-- a survey after collecting physical parameters at a site, and departed a site began.

ationship between shad spawning habitat suitability (depth, velocity, the spawning locations will be assessed as part of Study No. 3.3.1

al velocity across the entire site; therefore if it is too high to support elocity. The surface velocities measured near the river banks were often buld be expected. Again, as part of Study No. 3.3.1 IFIM Study, the lity of velocities, and depict the relationship between shad spawning various Project operations at representative spawning sites.

3-1A (a revision to Table 4.3-1 of the study report). There was a ude accurate USGS flow data.

model that will be developed for Study No. 3.3.1 will assess the bles (depth, velocity, substrate) and various flows at representative ll be filed with FERC on October 14, 2016.

Commenter	Comment	Responses
NMFS-4	Project Operation and Spawning Activity FirstLight reports that "the negative binomial model found no statistical difference (p=.302) in the mean splash counts before and after changes in generation at Cabot Station." However, the study design does not include a robust sample size (13 treatment observations and only 1 control observation) or a power analysis to detect a change in splash counts at the p=0.05 level. Therefore the study report does not support this analysis.	FL conducted the regression analysis to find the operation of the test, counts were dependent upon time (Durbin-Watson analysis are invalid. During questioning at the st paired t-test on splash counts before and after operations of the test, count data were first transfigure 4.3.1-1A). The resulting mean and variant and variance of the after counts were 3.02 and 1.1 of the natural log transformed before/after counts suggesting a difference in counts after operational recorded at a later time. As this first test incorpori increases or decreases in generation, we then exat applied the same paired t-test (see Study 3.3.6 At mean, even when no change in generation occurr night regardless of the operational changes at Cal
NMFS-5	Project Operation and Spawning Activity The flows highlighted in orange and purple in Table 1 indicate a failure to wait long enough to conduct the 'after' sample so that that project operational effect is observed. While the study plan proposed a delay between 'before' and 'after' counts of twenty minutes to one hour, the intention was to wait until river flows downstream of the project reflected the operational change.	See USFWS-7.
NMFS-6	Project Operation and Spawning ActivityTable 4-3-1 should report the 15-minute Montague USGS gage data that most closely corresponds to the time the 'before' observation was made and the 'after' observation made. We note four instances where river flow did not increase when units were turned on (highlighted in purple in Table 1) and two instances of flows increasing when units were turned off (highlighted in orange in Table 1). Had the observer protocol been to wait an hour to an hour and a half, all but one of these discrepancies would have occurred. Because the observations are being made downstream of the confluence with the Deerfield River, the effect of turning units on or off might not be reflected in discharge until at least an hour or more after the change in operation. By making splash count observations too soon after units were turned on or off, these observations further put into question the validity of the statistical tests that were conducted in terms of testing the effects of project operations on spawning downstream of the Turners Falls project.	Table 4.3-1 in the study report contained a transc (see <u>Study 3.3.6 Attachment B</u> Table 4.3-1A).
	Figure 4.1-2 clearly demonstrates rapidly fluctuating flows and numerous flow reversals based on 15-minute flow data (Zimmerman <i>et al.</i> , 2010). However, the spawning observations were only analyzed by number of splashes and did not take into account the proportional changes in discharge from project operations within the period of observation. An analysis of the proportional change in river flow using the 15-minute USGS flow data at Montague as well as the proportional change in splash counts should be evaluated and discussed in the relicensing study.	See USFWS-7.
NMFS-7	Project Operation and Spawning Activity	
	The report does not take into account the project operations that were occurring as part of Relicensing Study 3.3.2 whereby bypass flows were being altered throughout May and June. On March 8, 2016, a data analysis workshop was held for Relicensing Study 3.3.2. The color coded calendar indicating the bypass flows that occurred during the radio-telemetry study should be included in section 4.2.3 of the shad spawning study. We consider flows in the bypass reach, in addition to how many units at Cabot Station are operating, as an important project operation that was not considered, analyzed or explained in this report.	Minimum, maximum, and mean flow in the bypa flow manipulations that were being conducted in Falls Dam Discharge (cfs) throughout the 2015 sl <u>3.3.6</u> .
NMFS-8	Project Operation and Spawning Activity	
	Furthermore, given the limited number of observations, the report should discuss whether reported changes in the number of units operating, the associated river discharge at Montague and the number of observed splash counts increased or decreased. Based on these results, the report should include an analysis of the associated sign changes (positive or negative) under each scenario.	Before and after data were included in Table 4.3- assessing proportional or relative changes and FL objectives as it was determined, through the Durk

driving causes behind seasonal spawning intensity and found that the on test was significant). When this occurs, results from regression udy report meeting in March 2016, FERC suggested conducting a erations change for the 28 paired observations. To conform to the isformed with the natural logarithm (see <u>Study 3.3.6 Attachment D</u>, ace of the before counts were 3.41 and 0.99 respectively, while the mean 18 respectively. Attached as <u>Study 3.3.6 Attachment D</u> is a histogram s. The paired t-test was significant (t = 4.124, df = 27, p < 0.001) al change; however this is expected as the after counts are always rated all operational changes, regardless of whether or not there were mined each operational scenario, log transformed the counts, and <u>ttachment G</u>). In every case, the after mean was lower than the before ed. The data suggest that spawning intensity decreases throughout the bot Station.

ription error and has been revised to include accurate USGS flow data

iss reach is provided in <u>Attachment A to Study No. 3.3.6</u> and reflects the support of Study No. 3.3.2. Cabot Station, Station No. 1 and Turners had spawning survey period are included as A<u>ttachment C of Study</u>

-1. The approved RSP did not specify data analysis methods for L does not believe this additional analysis is warranted to meet study bin-Watson test, that splash counts are dependent on time.

Commenter	Comment	Responses
NMFS-9	<u>Project Operation and Spawning Activity</u> The report also states on page 5-30 "[w]hile operation of the Turners Falls Project may induce changes at shad spawning sites in the downstream reach, it appears that photoperiod and time since sunset are more influential on spawning activity than physical at spawning sites related to project operation" This statement cannot be supported given that only one observation was made where units in operation were held constant (the June 9, 2015 observations at 20:00 and 20:43) and a 39.7% drop in splash counts was observed.	The photoperiod analysis included data collected were initiated.
MADFW-1	Spawning Activity Spawning activity was assessed using splash counts, which was reported as average splash counts. Range and measures of variance should be reported along with the mean splash counts. Changes in Project discharge affect water velocity. Data on changes in water velocity were not reported but should be reported and analyzed for changes in splash count relative to direct and relative change in velocity.	See USFWS-7.
	Table 4.3-1 provides flow data on the paired before/after unit change tests and identifies splash counts, Cabot generation units running and MW before and after flow changes, time of before/after splash counts, changes in spawning area before and after unit changes and a single instantaneous USGS gage reading.	
	The splash count data should be presented and analyzed based on proportional change in discharge. The operational effects of relative change should be evaluated. It is unclear as written (pg 3-4), whether the individual based models addressed this question. Models were developed to explore the effects of generation, river flow, etc., but proportional values were not reported nor assessed.	
	Data should also be provided on Cabot unit discharge, Station #1 discharge and spill flows over time during the study periods to understand Project effects versus natural or Deerfield River flow effects, and the frequency and magnitude of flow fluctuations during the shad spawning period in a "typical" year.	

during Phase I surveys, in which no intentional changes to generation

Commenter	Comment	Responses
MADFW-2	The Division, United States Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service have reviewed the data in Table 4.3-1 of the report and found a number of problems with the data in the table and the evaluation that was conducted.	See USFWS-7.
	The USGS flow gage data should be reported with the instantaneous gage data for both "before" and after" splash counts and not one single reading.	
	The USGS gage data reported in Table 4.3-1 of the report for all June samples do not correspond to actual USGS gage readings. This table needs to be corrected.	
	Actual flows before and after unit changes did not, in most instances, reflect the planned and identified changes in Cabot generation (examples were provided, but are not repeated herein).	
	The net result of the above problems is that the study provides extremely limited information to evaluate the impacts of flow changes on shad spawning. The causes for the problems noted above are not clear, but appear to be two-fold:	
	Failure to wait long enough after the generation change to conduct the "after" sample such that the flow change from Cabot Station had not yet stabilized at the shad spawning site being assessed. The fact that the May 28 splash counts noted above had the longest time between before and after samples (1 hour 22 minutes) and had "after" flows that were the closest to reflecting the change in generation supports this conclusion. Even with that time delay, however, flows during the "after" count did not fully reflect a full Cabot unit flow change. While the study plan proposed a delay between "before" and "after" counts of 20 minutes to one hour, the intention was to wait until flows stabilized. The basis for the 20 minutes to 1 hour proposal is unknown, but clearly that delay time was insufficient. The "after" count for all but one other generation change test was conducted 30 to 52 minutes after the generation change	
	The later June splash count events were conducted at flows too high to provide meaningful information on impacts of discharge changes due to baseline high flows that would mask unit changes, and unit changes done at full capacity, where total river flow exceeds project capacity.	
	This study, therefore, provides little data upon which to base conclusions on unit change impacts. The test scenarios in the approved study plan were expected to demonstrate the impacts to shad spawning behavior and habitat in response to one or two units changes (on or off), or increments of 2,288 cfs or 4,576 cfs. No results were obtained that met this study purpose.	
	This is a critical matter, as flows fluctuate at Cabot station almost daily at magnitudes of one or more units. In fact, while the study plan called for evaluation of one or two unit changes, review of the gage data for May 26 to May 29 identifies that actual station operations had far more dramatic changes in discharge during the study period. The splash count sampling regime, even if it had been successful in evaluating one or two unit changes, would not have assessed the more dramatic flow changes that actually occurred during the period of study, as evidenced by USGS flow gage data inserted below as Figure 1 (not included herein). As we noted in section 4.1 above, even though unit changes greater than one or two unit changes do not occur as frequently, when they do occur, changes in flow can be dramatic. For illustrative purposes, during a sample period from May/June 2014, USGS gage data also identify rapid, dramatic changes on flow releases beyond one or two units, as depicted in Figure 2 (not included herein) inserted below.	
TNC-1	Impacts to spawning habitat were evaluated based on exposure of the habitat, which would imply that habitat is adequate for spawning if wetted. However, according to Hightower et al. 2012 and the habitat suitability curves used in the instream flow study, adequate spawning depths are somewhere in the range of 5 to 15 feet, with suitability declining sharply under depths of 3 feet. Therefore this analysis of impact to shad spawning habitat is inadequate.	Study No. 3.3.1 (IFIM) will provide an assess suitability. A discussion of the relationship bet due to FERC no later than October 14, 2016 ar
TNC-2	The before/after analysis for changes in generation lumped generation increases together with generation decreases. That is, the analysis only considered whether there was a change, not whether it was an increase or decrease in generation. Because we expect that increases in flow would have different effects than decreases in flow, the analysis should separate increases from decreases in order to draw conclusions regarding operational effects.	Attachment G of Study No. 3.3.6 depicts the respective separately. In other words, a paired t-test was performed by one unit; another paired t-test was performed for incomponent of the separation by 2 units; and tests were also performed for the separatement of thet

ment of the relationship between depth and shad spawning habitat tween depth and shad spawning habitat will be included in the IFIM report nd subsequently discussed in the amended Final License Application.

esults of a paired t-tests conducted for each operational scenario performed on before and after counts associated with increasing generation ed on before and after splash counts associated with decreasing generation creasing generation by 2 units; another test was performed for decreasing primed for all scenarios in which generation was increasing, as well as for

Commenter	Comment	Responses
		all scenarios in which generation decreased. Overa counts were lower than the before counts.
TNC-3	The methods stated that because "the duration between, before, and after splash count recordings was generally less than one hour, the effect of potential temperature changes on splash counts before, and after, generation changes was not assessed." According to the water quality study results, rates of temperature change can be high in May – in some cases, rates of over 1°C per hour. It is therefore unclear why temperature was not included in this analysis. Temperature changes would also presumably be different whether flows are increasing or decreasing, further justifying why these trends should be examined separately. The differences between increases and decreases in flow might include differences in temperature regimes as well.	Shad spawning occurs over a wide range of tempe within the range of 14-21°C, with temperatures be downstream of Turners Falls Dam (Sites 11, 12, and survey period indicate the minimum temperature r which are both within the suitable range that perm
TNC-4	Influence of Deerfield River flows could have also been included in the linear model analysis by subtracting Cabot Station generation flows (and bypass flows) from the Montague gage to determine which factor (Deerfield River or Cabot Station generation) was more or less influential in the model. These models are intended to demonstrate the effects of spawning; eliminating a variable that is hypothesized to influence spawning negates the value of the models (that is, if Deerfield River discharge influences spawning, some other variable in the model will incorrectly account for that variability in the pattern).	Specific data analysis methods were not detailed i assessment of the relationship between flow and s
TNC-5	Since there were multiple negative binomial models developed (as stated in the last paragraph on page 3-4), these models should have been evaluated in a model comparison framework to assess the strength of evidence among them rather than evaluating the significance of model components within a single model. Because variables can confound or conflate each other, it is important to evaluate them in multiple models. A multiple- model framework (see Burnham and Anderson 2010) will allow for a clearer understanding of the weight of variables in determining effects on splash counts.	A multiple model framework could not be support between consecutive measurements in space and/o distributed measurements was not met.
TNC-6	The autocorrelation discussion on page 4-20 is confusing. If there is a hypothesis that splash counts are influenced by photoperiod, then a difference in counts over time would not be unexpected. This autocorrelation analysis is for count data that is assumed to be independent of time; as explained in the previous paragraph on page 4-20, time is an important descriptor variable. It follows that the statement in the last paragraph on page 4-20, "the data have not been tested for relationships over time with photoperiod as a predictor" is also confusing – because the previous paragraph stated that photoperiod was included in the regression analysis. The multiple regression analysis described above (the model comparison approach) should demonstrate the strength of evidence of photoperiod for describing the splash count data, and it should not be necessary to judge by "appearances" of the data. That is, there is no clear support for the statement made on page 5-30: "While operation of the Turners Falls Project may induce changes at shad spawning sites in the downstream reach, it appears that photoperiod and time since sunset are more influential on spawning activity than physical changes at spawning sites related to physical operations." This statement cannot be made without an adequate assessment	See USFWS-3. To clarify, photoperiod refers to c of one day.
CRWC-1	4.3.1 Spawning ActivityThe USGS Montague gage discharge readings for the before and after times for the splash samples (Table 4.2.1-1 data and USGS downloaded 15 min data are similar) do not show the change in MW's/discharge stated in Table 4.3-1. Each Cabot unit's hydraulic capacity is 2,280 cfs. For the thirteen readings where a change in unit operation is listed, six show a change in discharge opposite of the listed generation change (5/26 twice, 5/27, 6/9 to 6/10, 6/10 to 6/11, & 6/17 to 6/18), one had no change in discharge for a decrease of two units (6/16), five had changes averaging 224 cfs and only one had a change that approximated the listed unit change (5/28, 1,530 cfs). The Deerfield River gage near West Deerfield (#01170000) showed no significant change in discharge during any of the periods of splash count sampling, and as such did not influence the Montague gage. Changes in generation should be readily apparent at the Montague gage due to its close proximity to Cabot station.	See USFWS-7.
	That the flow did not change as noted in Table 4.3-1 is of serious concern for the accuracy of the study and calls into question any conclusions. As such, this study should be repeated or data need to be corrected (consistent with 18 CFR §5.15(d)(1) and (2)).	Table 4.3-1 in the study report contained a transcr (see <u>Study 3.3.6 Attachment B</u> Table 4.3-1A).
CRWC-2 3/25/2016 filing	From CRWC 3/25/2015 Comment Letter: Please provide areas identified by HSI curves as suitable aquatic habitat for shad spawning in the Turners Falls impoundment. If this was not done, please identify any areas where it was thought there might be shad spawning habitat. Also provide documentation of the dates and times all survey sites in the impoundment were visited, and the launch location and time each night.	The boat sampling downstream of Turners Falls w the impoundment was launched at either Barton C recorded and the RSP did not specify that these be in <u>Attachment E of Study No. 3.3.6</u> .

all, regardless of whether generation increased or decreased, the after

eratures. Stier and Crance (1985) reported that peak spawning occurs elow 8°C and greater than 26°C deemed as unsuitable. Data collected and 13) in support of Study No. 3.2.1 throughout the shad spawning recorded was 15.6°C (May 16) and the maximum was 21.2°C (June 1), hits shad spawning.

in the approved RSP. Study No. 3.3.1 (IFIM) will provide an shad spawning habitat suitability.

ted by the data as it was determined that there was a relationship or time, and as such, the assumption of independent and identically

day length (or light hours) and does not change throughout the course

iption error and has been revised to include accurate USGS flow data

vas launched at Sunderland Bridge and the other boat used to sample Cove, Pauchaug, or Vernon Dam boat launches. Launch times were not e noted. The dates and times of shad spawning sampling are attached

Commenter	Comment	Responses

Commenter	Comment	Responses
Commenter USFWS-1	Comment Production Runs for Two Additional Bypass Flow Scenarios Assessing fishway attraction in the presence of competing flows (i.e., spill) is critical when evaluating fish passage conditions. The operational scenarios modeled and summarized in the tables on pages iii and iv, while informative, do not reflect operational conditions we anticipate will be required under a new license, as flows for passage, spawning and rearing, and riverine fish habitat are likely to be required. In particular, the Cabot Fishway scenarios (5-x) and the Spillway Fishway models (6-x) need to be run at moderate flows to provide needed clarity on future conditions. While instream flow study and telemetry study reports have not been filed or reviewed, based on what we know at this time from past sturgeon spawning research and the preliminary instream flow study results for reach 2, we request that FL provide the results of two additional production runs: a) a scenario that evaluates hydraulic conditions with a bypass reach flow between scenarios 5-3 and 5-4, or approximately 3,450 cfs; and	Responses FL evaluated the scenarios specified in the RSP, I by USFWS. The results from these additional run addendum is noted several times in response to co 2016.
	 b) a scenario that evaluates hydraulic conditions with the discharge from Bascule Gate No.1 Flow between the flows modeled in scenarios 6-1 and 6-2, or 2,370 cfs. 	
USFWS-2	Channel RoughnessAs noted on pg. 2-2 and elsewhere, Gomez and Sullivan Engineers (GSE) have modeled all physical boundary conditions as hydraulically smooth. Implicit in this model simplification is the lack of calibration to real flows (which is distinct from the verification process).Hydraulically smooth boundaries are generally appropriate for shallow, low velocity turbulent flows. However, many of the modeled reaches/locations are of sufficient velocity and depth, with sufficient channel roughness, to be characterized as hydraulically rough. Hydraulically rough surfaces may produce a very different velocity distribution than hydraulically smooth surfaces; and velocity distributions are a key correlation to fish movement (along the bank, throughout the river, in the power canal, and approaching fishway entrances). As an example, this simplification may relate to the discrepancy between measured and simulated velocities downstream of the fishway entrance cited on pg. 6-5 of the study report. Unfortunately, the influence of this simplification on the overall modeling effort 	We agree that conducting a sensitivity analysis is conference call and is currently conducting a sens analysis is based on a hydraulic roughness of 1.63 roughness of 0.035 assuming an average river dep the addendum.
USFWS-3	Intake Rack Approach Velocity GSE provided colorized vector plots of the intake velocities in front of the racks at Station No. 1 and Cabot Station. To better evaluate the hazards of impingement and entrainment, we request that FL provide contour line maps of approach velocities 1 foot in front of the racks for scenarios 1-x and 3-x with color lines clearly labeled in 0.5 fps increments (or finer).	We will generate additional plots showing the vel them in the addendum. Generating actual contours "color bins" to achieve the same affect without ac
USFWS-4	Station No. 1 Intake Overview Plots To help us better understand the entrainment potential of juvenile alosines, we request that FL produce particle trace plots showing a similar perspective as the flow vector plots in figures 8.2.1-1, 8.2.1-2, 8.2.1-3, 8.2.2-1, 8.2.2-2, 8.2.2-3, 8.2.3-1, 8.2.3-2, and 8.2.3-3. If possible, for clarity, please include at least five seeds in each particle trace plot. It is our understanding that generating these plots will not necessitate new production runs.	We agree to generate the additional particle trace
	Cabot Station Intake Overview Plots Similar to the above request, we request that FL produce particle trace plots similar to figures 8.3.1-1, 8.3.1-2, 8.3.2-1, 8.3.2-2, 8.3.3-1 and 8.3.3-2 for the Station No. 1 intake. If possible, for clarity, please include at least five seeds in each particle trace plot. It is our understanding that generating these plots will not necessitate new production runs.	

but we agree to simulate the two additional production runs requested ns will be included in a study addendum. Note that reference to an comments below. FL will file the addendum with FERC on October 14,

s appropriate. FL agreed to do this during the March 31, 2016 sitivity analysis of the Cabot Fishway Entrance model. The sensitivity 35 feet, which is approximately equivalent to a Manning's 'n' pth of 15 feet. The results of the sensitivity analysis will be included in

locities in 0.5 fps increments, 1 foot in front of the racks and include rs from the data we have would be difficult, but we can create 0.5 fps ctually generating contours.

plots and will include them in the addendum.

Commenter	Comment	Responses
USFWS-5	Fishway entrance velocity	
	The Service evaluates fishway attraction in the context of location, flow, and velocity. While fishway entrance locations are known and flows from the existing fishways were fixed at 318 and 368 cfs, modeled velocities at the entrances (for which the Service has established criteria) are unknown. We request that FL provide tables for all scenarios (involving fishways) that include average entrance velocity as well as the other scenario parameters (i.e., scenario number, station discharge, fishway discharge, total flow).	We will generate the requested tables and will inc
USFWS-6	Station No. 1 Pass-Through Flow	
	Starting on pg. 7-1, scenarios 1-x indicate a high degree of fluctuation in the canal pass-through flow. Is this simply because the pass- through flow was modeled as a pressure boundary (under which some variation is understandable) or is this indicative of a more serious convergence problem that would add uncertainty to the results, or is it something else altogether? In the interest of improving confidence in the model, we request that FL briefly expand the explanation of this variability.	We do not believe that there is a convergence propass-through flows is somewhat high, as a percerquite stable, and the magnitude of fluctuation is sefluctuations are the result of the pressure boundarin the canal. The canal inlet and turbine flows are (most important location) are stable. The variation of the racks. We will expand on the explanation is
USFWS-7	Cabot Fishway CFD Model Bypass Flow	
	Similar to the concerns raised in the section above, we have concerns regarding fluctuations in the bypass flow as described on pg. 7-6. Please provide an explanation on these fluctuations as requested above.	We do not believe that there is a convergence pro
USFWS-8	Additional minor comments:	
	• Pg. iv, paragraph 2 : The report indicates that the Computational Fluid Dynamics Model results were assessed relative to "established agency criteria for American shad swim speeds." While 7 fps may be a burst speed for adult shad that is appropriately conservative for this study, it should not be inferred as a uniform value for the species in all regions, or accepted by all agencies.	5.4-1 and 5.4-2 inadvertently referred to the Cabo
	• Pg. 2-2, paragraph 1: "by hydraulically smooth" should read "be hydraulically smooth"	
	• Pg. 5-7, Tables 5.4-1 and 5.4-2: These tables should be labelled "Spillway model," not "Cabot Tailrace model"	
	• Pg. 5-15: spillway gate "teeth" are more appropriately referred to as nappe spoilers and serve to prevent vibrations in the gate by reducing transience in flow separation over the crest.	
NMFS-1	NOTE: Numerous editorial comments were provided by NMFS in its comment letter. The summary below addresses only the major comments	FL noted this variance in the Updated Study Rep mentioned in the follow-up Updated Study Repo
	Page 1-7, First paragraph states:	Study Report Meeting Summary notes (dated Oc
	Because the approach and sweeping velocities are typically evaluated approximately 1 ft in front of the rack face, and the forebay models already included the trash rack area, it was determined that a highly detailed model of the intake rack was not necessary to meet the CFD study objectives.	While we understand the benefits of modeling th a reasonable balance between computational dem
	We were not notified of this variance from the FERC determination. The computational limitations are understood, but the necessity of modeling a fine scale section (or alternate evaluation) of the intake racks at both Station No. 1 and Cabot Station is required to properly evaluate approach and sweeping velocity. According to our guidelines (NOAA 2011), physical measurements of the velocity components in front of screens should be conducted as close to the rack face as possible without entering the boundary layer turbulence, so the 1 ft spacing suggested in the study may not reflect the best evaluation of velocity components.	

clude them in the addendum.

below with the model. While the magnitude of the fluctuation in the ntage of the total pass-through flows, the volume of fluid in the model is small compared to the flow rates in the rest of the domain. The ry used at the pass-through outlet to maintain a fixed tailwater elevation e constant, and as a result the velocities in front of the intake racks n in the pass-through flows is not believed to affect the results in front n the addendum.

blem with the model and will provide an explanation in the addendum.

correct these minor editorial comments. NMFS is correct that Tables of Tailrace model and should have referenced the Spillway model.

ort Summary filed in September 2015. This variance was also rt Meeting presentation in September 2015 as well as the Updated tober 2015) during which some discussion about this variance occurred.

e intake racks at as fine a scale as possible, using the 1-foot mesh struck ands and model precision.

Commenter	Comment	Responses
NMFS-2	Page 2-2, First paragraph states:	As part of the addendum we are conducting a se effect this assumption has on the water levels an
	All bathymetric surfaces and structures were assumed to by hydraulically smooth.	
	'By' should be replaced with be. We understand the pragmatism of this assumption but this assumption is not valid for most bathymetric surfaces, particularly in areas with jagged ledge outcroppings which are found throughout the model domains. A sensitivity analysis should be conducted to evaluate the potential effect of this assumption on computed water surface elevations and water column velocities.	
NMFS-3	Page 3-2, Section 3.1.3 states: These data were supplemented by additional bathymetric data that was collected in Reach 3 for Study No. 3.3.1: Conduct Instream Flow	The addendum will clarify the extent and scope combination of survey data collected via RTK-C depths collected via a boat using an ADCP.
	Habitat Assessment in the Bypass Reach and below Cabot Station.	
	Add text to clarify the extent/scope of this data. The report should make it clear whether the data consisted only of bathymetric survey point or if additional ADCP velocity measurements were also collected What were the flow conditions in the river during this supplemental data collection? Can the collected ADCP data from Study No. 3.3.1 be used as another verification run?	generally when we are collecting bathymetric data (with the ex generally when we are collecting bathymetric data velocity data. The downside of collecting ADCF significantly degraded.
		The ADCP manufacturer generally recommends velocities to obtain accurate velocity data. There the boat speeds targeted between 1-2 ft/s (~1 mp usually in the 4-8 ft/s (~3-5 mph) range, which The increased boat speeds (within the range that bathymetric data.
		Additionally, because of the difficulty in coordinate range of flows and under conditions that were not and Study 3.3.1 we were careful to allow enough velocity data. This was not the case when we we
		There are 2-3 transects collected at other flows f for additional verification. As noted in our respo efforts are within the scope specified in the RSP

ensitivity analysis for the Cabot Fishway Entrance model to evaluate the nd velocities and will include the results in the addendum.

of the supplemental bathymetry data. The supplemental data was a GPS and total station (i.e., bathymetry points only) and bathymetric

Acception of a couple of transects) was collected using an ADCP, however ata, the boat speeds are much higher than recommended to collect P data at higher boat speeds is that the accuracy of the velocity data is

s that the boat travel at speeds equal to or less than the ambient river efore when we are intending to collect velocity data, we generally keep ph). When collecting only bathymetry data, the target boat speeds are is higher than we generally prefer if using the data for water velocities. t we travel within) do not meaningfully impact the accuracy of the

inating flow releases, the bathymetry data were collected under a wide not necessarily stable. When collecting water velocity data for this study gh time (up to 1-2 hours) for the river to stabilize before collecting vere collecting bathymetric data.

for velocity purposes within the study area that could potentially be used onse below however, FL does not believe additional model verification

Commentan	Commant	Demenses
Commenter	Comment	Kesponses
NMFS-4	Page 4-1, Fifth paragraph states: The Station No. 1 Forebay CAD model includes the power canal and forebay walls, trash boom and intake structures up to and including the penstocks.	It is correct that the intake racks are not in the mo it is not as clear as it could be that they are not in add annotation to the figures indicating that the in
	Based on our conference call with the Licensee's consultant on March 31, 2016, we understand that the intake racks including the bars were not physically included in the model structures. Please clarify.	A discussion of how the log boom is included in
	Page 4-1, Eighth paragraph states: The Cabot Station Forebay CAD model consists of the forebay and power canal walls, log sluice, fish weir and intake structures, including the intake racks and penstocks.	A flow scenario including flows through the eme emergency gate used to provide attraction water is evaluated.
	Based on our conference call with the Licensee's consultant on March 31, 2016, we understand that the intake racks including the bars were not physically included in the model structures. Please clarify.	
	Page 4-7 Penstock No. 3 is mislabeled. The intake rack is shown in the figure, but is not actually in the CAD model. Please clarify.	
	Page 4-8 The log boom is depicted in the figure, but there is no discussion of how the floating log boom is accounted for in the model.	
	Page 4-9 The intake rack is shown in the figure, but is not actually in the CAD model. Please clarify.	
	The Cabot Station forebay model extends approximately 700 ft upstream from the power house, but does not include the discharges from the emergency gate used to sluice debris from the log boom and the emergency gate used to provide attraction water for the upstream fishway. Both of these gates are used during regular operations and, thus, should be reflected in the model.	
NMFS-5	Section 6.2 The verification run for the Cabot Station forebay is inadequate. The verification run involved Unit 1, 5, and 6 operating for a total discharge of 6,684 cfs (not including the log sluice at 1,290 cfs). The production runs to evaluate existing conditions at the power house involved Cabot Station flow at 1,700 cfs, 7,500 cfs, and 13,728 cfs with 200 cfs flowing over the fish weir down the log sluice. Therefore, the verification run does not appropriately validate the production runs with the exception of Scenario 3-2 (though different units were generating). In addition, the verification run does not account for discharge over the fish weir, the log boom emergency gate, or the attraction flow emergency gate. A more comprehensive verification approach would have been to collect field data at station capacity and minimum flow with all appropriate gates and weirs set to reflect conditions when downstream passage is occurring	We believe that the selected verification run was collection were not specified in the RSP. The ver minimum production run flow (1 unit generating verification run was intended to verify the model scenario. The log boom emergency gate and the attraction

nodel. They were included in the figures for reference, but we agree that n the models. We will clarify the status of the intake racks in the text and intake racks were not modeled in the addendum.

the model will be included in the addendum.

ergency gates gate used to sluice debris from the log boom and the for the upstream fishway were not called for in the RSP and were not

s appropriate. The methodology and flow rates to be used during field erification run was conducted for a mid-range flow between the g) and the maximum production run flow (all units generating). The el under a single condition, not under every production model run

flow emergency gate were not in the production runs per the RSP.

Commenter	Comment	Responses
NMFS-6	Page 6-2, Third paragraph states: The log sluice gate was open 10 ft during most of the fieldwork and the fishway weir was not installed, resulting in approximately 1,290 cfs (calculated) passing through the log sluice, for a total flow of 7,974.	We believe that the selected verification run was collection were not specified in the RSP, and the verification runs were intended to verify the mod model run scenario.
	Therefore, all production runs involving the fish weir are not validated. Additional field data should have been collected with the fish weir installed to validate this model.	The log boom emergency gate and the attraction
	Page 6-2, Sixth paragraph states: Based on a comparison of the ADCP and CFD model results it is believed that the results from the CFD model production runs are appropriate for meeting the objectives of this study.	The ADCP and CFD model results shown in the being shown, and possibly an additional figure on Additional plots will be included in the addendur
	The visual comparison of the verification run and the measured data does look good with the exception of the cross section immediately in- front of the intake racks. This is the most important area to evaluate for this particular model. A quantitative evaluation should be completed to evaluate the validity of the verification run. We recommend developing a grid of the cross section in front of the rack with each grid representing no more than 5% of the total rack area. Calculate the average channel velocity in the grid for the measured and simulated flow and compare the results.	
NMFS-7	Section 6.3 The verification run for the Cabot Station fishway is inadequate. The flow conditions during the verification run are not similar to any of the production runs with the closest being Scenarios 5-1 and 5-2 which are both over 50% smaller and larger than the verification flow condition. The flow in Scenario 5-5 is nearly six times that of the verification run. This level of extrapolation from the conditions in the verification run does not appropriately validate the model. We recommend collecting additional field data during appropriate flow conditions to further validate the production runs, particularly at a cross section within the fine mesh portion of the model.	We believe that the selected verification run was collection were not specified in the RSP, and the verification run was conducted for a mid-range fl the maximum production run flow (all units gene intended to verify the model under a single condi

appropriate. The methodology and flow rates to be used during field RSP did not specify multiple verification runs for any model area. The lels under a single operating condition, not under every production

flow emergency gate were not in the production runs per the RSP.

figure may need some additional explanation to help clarify what is r two that show only the transects directly in front of the intake racks. m

appropriate. The methodology and flow rates to be used during field RSP did not specify multiple verification runs for each model area. The low between the minimum production run flow (1 unit generating) and erating plus relatively high bypass flow). The verification run was ition, not under every production model run scenario.

Commenter	Comment	Responses
NMFS-8	Page 7-4, Sixth paragraph states:	
	The units at Cabot Station are typically operated in sequence from Unit 1 to Unit 6, therefore, if three (3) units were generating, it would most likely be Units 1, 2, 3.	The verification run conditions were not specified capture a mid-range flow condition and the high upstream of the intake racks.
	Clarify why Units 1, 5, and 6 were operating during the verification run.	
	Table 7.3.1-2	The flow instabilities in Table 7.3.1-2 will be elal
	Briefly explain the flow instability in the left and right, upper and lower channels.	model had a certain amount of flow oscillation. I oscillation. The model was run for several of thes at which time the model was stopped and the resu
	<u>Table 7.3.2-2</u>	
	Briefly explain the negative 97.5% Exceedance Flow in the lower right channel.	The negative 97.5 exceedance flow in the lower r Because the flow in this channel was relatively lo
	Table 7.3.3-2, Table 7.3.4-2, & Table 7.3.5-2	backwatered from downstream, the oscillations c
	Briefly explain why the 2.5% exceedance flow is larger than the 97.5% exceedance flow for the Cabot fishway.	
		It appears that the Cabot fishway flows were acci
	<u>Table 7.4.1-2</u>	the 2.5% exceedance flow and 97.5% exceedance
	Briefly explain why the 2.5% exceedance flow is larger than the 97.5% exceedance flow for the left island, right island, and outflow. Also, briefly explain the negative flows for the middle channel and tainter gate channel.	The middle and tainter gate channel negative flow instantaneous flows to be slightly positive or negative the average flow at these locations, the pet flow is
	Table 7.4.2-2	model flows (~700 cfs).
	Briefly explain the negative flows for the middle channel and tainter gate channel.	
	<u>Table 7.4.3-2</u>	This is also the case for Table 7.4.3-2, where sma flow (97.5% exceedance flow = -78 cfs) for the ta
	Briefly explain the negative flows for the tainter gate channel.	to the overall model flow of over 14,000 cfs.

ed in the RSP. Units 1, 5 and 6 were run during field data collection to velocities that occur on the inside of the bend in the forebay just

aborated upon in the study addendum. As noted in the report, each The lower-flow models generally had higher relative amounts of ese oscillations until it was clear that it was not dampening out any more, sults were processed.

right channel in Table 7.3.2-2 was due to the model oscillations. ow compared to the left channel flow, and the right channel is largely can result in short-term flow reversals.

bidentally reversed in the three tables (7.3.3-2, 7.3.4-2, 7.3.5-2) where we flows are noted. This also appears to be the case for table 7.4.1-2.

bws in Table 7.4.1-2 are a result of small model oscillations causing the gative even though there is no net flow through these areas. As stated in is 0 and the oscillations (10-20 cfs) are a small percentage of the total

hall oscillations a small percentage of the time result in a slight negative tainter gate channel. These oscillations are very small (< 1%) compared

Commenter	Comment	Responses
NMFS-9	Page 8-1, Fourth paragraph	
	Our guidelines for approach velocity are species and life stage specific, but in the case of the target species for this reach of the Connecticut River, we agree with USFWS' criterion. Likewise, we are in concurrence that sweeping velocity should exceed approach velocity. We request further explanation on how the component velocities were calculated.	As described in Section 4.1.1, to facilitate the ev geometry was rotated such that the intake racks model. This means that the face of the intake rac component velocities.
		To calculate the component velocities across the approximately a 1 foot spacing, parallel to the ra foot (and not exactly 1 foot) because when genery- y-max, z-min and z-max) and the distance (e.g. s increments to come close to the target spacing. 8.2.1-5 and 8.2.1-6 of the report. These x,y,z po specifically formatted text file) and the CFD sofvelocities, which are aligned with the Cartesian the components that are parallel to the face (swe (approach velocities (VA), in the y-z plane) base Cartesian coordinate system were calculated as f
		• VS - Because the model domain was al parallel to the x-axis, VS is equal to Ux
		• VA - The approach velocity is in the y- 19.9 feet and a run of 5.0 feet. Therefo
		• Un = Uy*Cosine(Arctangent(5/19.9))+
		This method for evaluating the velocities at the r face of the intake rack. Each point has an x, y ar (Umag) and direction, and a velocity component normal to the face (approach velocity (VA)). The categorize the flows at the rack face. The follow
		• The maximum approach velocity (VA) velocity as computed above.
		• The maximum sweeping velocity (VS) velocity as computed above.
		• The percentage of the rack face that had points that meet this criteria.
		• The percentage of the rack face that had calculated as the percentage of the point
NMFS-10	Page 8-2, Eighth paragraph Our guidelines (NOAA 2011) state that flow distribution across a screen, or in this case rack, should be uniform. In particular, the sweeping velocity should be unidirectional such that downstream migrants are led to a bypass entrance or other point of egress from the forebay. In the case of Scenario 1-1, even though all of the approach and sweeping velocities across the entirety of the rack face met numeric criteria, non-uniform flow distribution will eventually lead to entrainment or impingement, thus not protecting the fisheries resource (See Figure 8.2.1-6). Please provide further detail on how the statistical evaluation was calculated and the component velocities determined from the model output.	See NMFS-9 for further detail on how the statist from the model output.

valuation of the velocity vectors in front of the intake racks the model were aligned with the Cartesian coordinate system used for the CFD cks is parallel to the x-axis in the model. This simplifies computing the

a face of the intake racks, first a grid of x,y,z points was created with tack face and 1 foot in front of the racks. The spacing is approximately 1 rating the x,y,z points the limits were established (x-min, x-max, y-min, x-max minus x-min) was divided into a whole number of equal This grid is shown (with velocity vectors turned on) in Figures 8.2.1-4, ints were passed to the CFD model software as a "neutral file" (a tware post-processed the point data and output the Ux,Uy,Uz component coordinate system. Using these Cartesian-aligned velocity components, eping velocities (VS), aligned with the x-axis) and normal to the face ad on the orientation and slope of the rack relative to the original model follows:

igned with the Cartesian coordinate system such that the rack face is and no computation is necessary.

z plane and based on Uy and Uz. The rack face is sloped with a rise of re the velocity component normal to the rack face (Un) is equal to: Uz* Cosine(Arctangent(19.9/5))

rack face resulted in a total of 1,920 evenly spaced points across the nd z location, Ux,Uy and Uz component velocities, a velocity magnitude a parallel to the face (sweeping velocity (VS)) and a velocity component nese values at each point were used to calculate the statistics to ving were calculated:

was taken as the single point with the highest computed approach

was taken as the single point with the highest computed sweeping

d VA values less than 2.0 fps was calculated as the percentage of the

d VA values less than 2.0 fps or VA values less than VS values was ts that meet this criteria.

ical evaluation was calculated and the component velocities determined

Commenter	Comment	Responses
NMFS-11	Figures 8.2.1-4 to 8.2.1-6; Figures 8.2.2-4 to 8.2.2-6; and Figures 8.2.3-4 to 8.2.3-6Include additional intake rack figures to display component velocity. For figures showing approach velocity, the scale should have a maximum of 2 fps such that all approach velocities exceeding 2 fps are red. For figures showing the sweeping velocity, the color scale should be binary such that VS>VA is green and VS \leq VA is red. The sweeping velocity figures should show directionality.	An additional plot with a binary color scheme suc addendum.
NMFS-12	Figures 8.3.1-3 to 8.2.1-6; Figures 8.2.2-4 to 8.2.2-6; and Figures 8.2.3-4 to 8.2.3-6Include additional intake rack figures to display component velocity. For figures showing approach velocity, the scale should have a maximum of 2 fps such that all approach velocities exceeding 2 fps are red. For figures showing the sweeping velocity, the color scale should be binary such that VS>VA is green and VS \leq VA is red. The sweeping velocity figures should show directionality.	An additional plot with a binary color scheme suc addendum.
NMFS-13	Figure 8.3.1-6; Figure 8.3.2-6; and Figure 8.3.2-6 Include profile views from the forebay across the fish weir to the boundary condition of the model showing acceleration and velocity.	An additional plot across the fish weir to the bour addendum.
NMFS-14	Production Runs 5-1 through 5-5 Figure 1 shows the area to be revised for several figures in the report whereby each of these types of figures should be zoomed into the yellow box and another cross section at the red line should be added. [See figure in letter]	These type of figures will be modified as requeste

ch that VS>VA is green and VS≤VA is red will be added to the

ch that VS>VA is green and VS≤VA is red will be added to the

ndary condition of the model showing velocity will be included in the

ed in the study addendum.

Commenter	Comment	Responses
USFWS-1	Magnitude of the Calibrated Roughness Values: The calibrated roughness values (ks) of 0.005 to 1.3 (presented in Figure 3.2-2) correspond to approximate Manning's n values of 0.018 to 0.042. The lower value (ks=0.005) is quite low for a major river such as the Connecticut. Though the model is calibrated (predicted water surface elevations generally to within 0.15 foot of actual measured elevations), this demonstrates that the roughness values that were used predict water surface elevations well. However, the model may not accurately represent localized water velocities, especially in reaches where Acoustic Doppler Current Profiler measurements were not taken.	The section of the Connecticut River with an appr generally considered to have a relatively consister meandering. Open Channel Hydraulics by Ven Te 100 feet) matching such a description as have a M the Manning's n for a major stream should be less offer less effective resistance. As such, a Manning should also be noted that the section of river mode which has a smaller role in defining the hydraulics
		Additionally, the River 2D manual states that an in reasonable. While available reservoir sediment da suggests that the d85 is between 1 mm and 2.5 mm suggesting that the 0.005 ks value implemented in
		Finally, the HEC-RAS manual also provides the L below. The section of the Connecticut River utiliz approximately 450 feet and 800 feet, and a channed Assuming a rectangular channel an average hydra foot deep rectangular channel). For a d84 ranging Manning's n to be between approximately 0.017 a in the model (i.e. approximate Manning's n value
		Figure 1: Excerpt from HEC-RAS Manual
		Limerinos (1970) related n values to hydra size based on samples from 11 stream cha ranging from small gravel to medium size equation is as follows:
		$n = \frac{(0.0926)R^{1/6}}{1.16 + 2.0\log\left(\frac{R}{d_{84}}\right)}$
		Where: $R =$ Hydraulic radius, in feet (data
		d_{84} = Particle diameter, in feet, tha
		250 mm)

Study No. 3.3.9 Two-Dimensional Modeling of the Northfield Mountain Pumped Storage Project Intake/Tailrace Channel and Connecticut River Upstream and Downstream of the Intake/Tailrace

roximate Manning's n value of 0.018 (i.e. ks value of 0.005) is nt cross sectional shape, little to no vegetation, and minimal Chow cites a minor stream (i.e. top width at flood stage of less than fanning's n value of 0.025 to 0.033. This reference also indicates that than that of a minor stream of the same description, because the banks g's n value on the order of 0.018 is not considered low for this study. It eled is impounded, and the backwater may result in a roughness factor es of the reach than in a typical riverine situation.

initial estimate for ks between 1 and 3 times the largest grain size is ata has a relatively small sample size, the grain size distribution m. This would provide a ks value between 0.001 and 0.0075, the model is not too small.

Limerinos equation for estimating Manning's n as seen in Figure 1 zing a ks of 0.005 has a channel top width which varies between el depth which varies from approximately 10 to 20 feet on average. aulic radius would be approximately 14 feet (i.e. 600 foot wide by 15 between 1 mm and 2.5 mm, the Limerinos equation estimates the and 0.019. This method also suggests that the roughness implemented of 0.018) is not too small.

aulic radius and bed particle annels having bed materials boulders. The Limerinos

(3-2)

a range was 1.0 to 6.0 feet)

at equals or exceeds that of (data range was 1.5 mm to

Commenter	Comment	Responses
USFWS-2 <u>Variations of Roughness Associated with the Bathymetry, Bed Forms, and Vegetation</u> : Conventional practice in the computational modeling of rivers and streams leads to a lateral and longitudinal (i.e., 2D) partitioning of a river reach according to variations in bed form and vegetation. These variations are categorized several ways (e.g., channel, overbank, floodway, flood fringe), but are typically described by <i>associating changes in roughness height</i> (e.g. ks, Manning's n). This lateral and longitudinal partitioning of roughness values (input int the Bed Load file in River2D) is an essential ingredient–along with variations in bed elevation—in the accurate two-dimensional modeling river flow. The Revised Study Plan for study 3.3.9, dated August 14, 2013, states that calibration of the model "will primarily consist of adjusting the nodes 'roughness coefficient' within the model to better fit observed water surface elevations and water velocities" and that successful calibration will "show a reasonable match with field-measured velocity profiles." However, as shown in Figure 3.2-2, this reper does not account for the dramatic changes in roughness one would expect moving laterally across a stream (e.g., floodplain to main channel). Instead a composite roughness value that only changes longitudinally down the River is used. While changes in bed elevation are	A lateral variation of roughness values between t fringe) was not incorporated into this 2D model t within the channel. The lack of water encroachin shows that there is only minor encroachment of v evaluated [i.e. Scenario 36: 5% Annual Exceedan at of 185 (i.e. maximum normal FERC operating pertinent for this study, and variation of roughness issue. Further, adequate information was not ava flood fringe zones for this section of river.	
	modeled in 2D, associated ks values are not. Therefore, while the model predicts water surface elevations well, it may not accurately represent the lateral distribution of velocities which are instrumental in assessing habitat, fish passage, and fish movement through these reaches of the River. In order for the model to be accurate and provide detailed information on passage route velocities across the channel, model recalibration would be needed.	Bathymetric measurements collected for this stud dimensional model uses to account for lateral var size distributions suggested that the d85 along the river, and did not support the use of laterally vary regarding subsurface vegetation to support the use Figure 1: Example of maximum water surface

the four major zones (i.e. channel, overbank, floodway, and flood because the inundation area for the scenarios run existed primarily ng zones other than the channel is exhibited in Figure 1 below. Figure 1 water into the overbank zone for one of the highest WSEL scenarios nnce Flow, 4 Units Generating, and a water surface elevation of the dam g level)]. Therefore, only roughness values within the channel are ess values between these four major zones was not considered to be an ailable for calibration of roughness values in the overbank, floodplain, or

ady were used to incorporate major bed forms for which a twoariation in discharge within the channel. The small set of available grain he edge of water was rather similar to the d85 present in the center of the rying ks values within the channel. Finally, there was no information use of laterally varying ks values within the channel.

extents outside of the channel.

Commenter	Comment	Responses
USFWS-3	Swim Speed, Fatigue and Passage: Section 6 of the report provides a detailed literature review of the swimming speeds of target species on the Connecticut River characterized into a three-tiered swim speed model: sustained/prolonged/burst. Section 7.3.1 notes that a velocity of 5 fps "does not create a velocity barrier for American Shad passage" because prolonged and burst speeds for this fish are 7 feet per second (fps) and 13 fps, respectively. However, it is important to note that successful passage is related to swimming capacity <i>and distance</i> ; in other words, one must account for issues of fatigue. This issue is discussed in Section 6 of the report (e.g., Castro-Santos [2005]), but is not taken into account in data analysis.	Definitive conclusions pertaining to actual effect coupled with empirical fisheries data from other
	Acceptable methods for evaluating the flow speed <i>and length</i> of a velocity barrier do exist. For example, Figure 7.2-3 illustrates the tailrace flow field under full pumping conditions where velocity is 1.5 to 3.0 fps or greater. Assuming those conditions persist outward from the intake for approximately 300 feet, the barrier cannot be traversed by sustained speed alone and an accounting for fatigue must be made. Using the model posed by Haro et. al. (2004), for a 16-inch adult shad encountering a 300-foot-long velocity barrier of 2.5 fps at 18°C, one would expect that only 72 percent of shad would pass the barrier. Predicted success for weaker swimming species like blueback herring would be dramatically lower. Irrespective of any targeted standard for percent passage success, a 5 fps flow over any appreciable distance may indeed be a barrier, and a more in-depth evaluation of this is warranted. There are other models which allow evaluations of fatigue in the presence of velocity barriers (Behlke 1991; Castro-Santos 2005; Bell 1991). The service intends to run such an analysis after the model report is filed and accepted by the Federal Energy Regulatory Commission. In the meantime, Sections 6 and 7.3 should be regarded as informational only; passage efficiency and entrainment potential requires a more in-depth evaluation.	
USFWS-4	Distance Scale: The distance scale on many figures (e.g. 7.2-2 is inaccurate and should be corrected).	The distance scale for Figures 7.2-1, 7.2-2, 7.2-3
NMFS-1	The velocities and flow fields are not compared to non-generation conditions. To determine the effect of Northfield Mountain operation on fish habitat, the Licensee should show the model results for the 5%, 25%, 50%, 75%, and 95% exceedance flows at the high and low impoundment water surface elevation level without generation or pumping to determine the change in velocity and flow field conditions.	The operating scenarios are defined in Table 3.3 and 75% exceedance flows), different Vernon re September 13, 2013 Determination letter they re 95% exceedance flows. The study plan did not r objectives include assessing velocities and flow None of the study objectives is aimed at evaluation
NMFS-2	 The Licensee does not properly synthesize the data to evaluate the effect of Northfield Mountain operations on fish habitat. For example: little discussion of rheotactic delay from the reversal of flow in the river evaluate the combination of hydraulics that may affect fish habitat (water depth plus depth-averaged velocity) determine the effect of operations on passage at French King Gorge or below Vernon the diurnal cycle of pumping and generating that may affect certain life stages or spawning behaviors 	This study did not include objectives aimed at ev operations on habitat. In contrast, the study obje migration (i.e. velocity barriers, flow reversals, f As stated in the study report, the hydraulic mode the potential for migration delay and entrainmen fish are not possible until results from this study study has the potential to inform and strengthen encountered by migratory fish in the vicinity of t
NMFS-3	Figure 3.3-2: The mesh surface comparison to the bathymetric surface near French King Gorge and the TFI impoundment has a large discrepancy. The report should discuss the implications of this on model results.	A number of deep chasms (i.e. in excess of 120 f French King Gorge and lower TFI (e.g. King Ph these chasms lead to difficulty in accurately repr but it is not expected to have a significant impac by backwater from the Turners Falls Dam.
NMFS-4	Figure 4.1.1-1: Figure is missing transect 2b and 3b.	During data collection for the four unit scenarios quality was poor (i.e. missing data) for one trave should not be a Transect 2b or 3b on Figure 4.1.
NMFS-5	Several specific comments provided on data presentation and analysis.	Additional analysis of the modeling results may completed. Specific comments provided by NMI

ts on migratory fish are not possible until results from this study can be studies.

, and 7.2-4 inadvertently referred to the index map.

.9-1 of the RSP, which includes different flows through the TFI (25, 50 cleases and different Northfield pump/gen scenarios. In FERC's quired additional analysis of flows through the TFI including the 5 and require simulating conditions with Northfield idle. In addition, the study fields at the Northfield tailrace/intake, when pumping and generating. ing velocities at the Northfield tailrace/intake with Northfield idle.

valuating the effects of Northfield Mountain Pumped Storage Project ectives pertain to evaluating the impact of Project operations on fish false attraction).

eling and the associated literature reviewed for this study have revealed t, but definitive conclusions pertaining to actual effects on migratory can be coupled with empirical fisheries data from other studies. This the conclusions of the other studies by delineating the conditions the Northfield Mountain Pumped Storage Project.

feet deep) exist within the Connecticut River in the vicinity of the illips Abyss and French King Hole). The steep nature of the gorge and resenting the features (i.e. using a reasonable number of mesh elements), t on the overall river hydraulics, as these areas are generally influenced

s, the ADCP unit was traversed across the transects twice. However, data erse during generating conditions of transects 2 and 3. Therefore, there 1-1.

be completed once the studies related to migratory fish in the TFI are FS will be considered.

Commenter	Comment	Responses
MADFW-1	2.2.4 Quantitative Odonate Surveys	
	The FERC Study Plan Determination (p. B-58) stated that FL should "use the quantitative data collected under study 3.1.2, such as frequency, amplitude, and speed of boat wakes when evaluating effects on odonate emergence." However, the report states that "boat traffic was extremely light at all sites on all dates, and no disturbance from boat wakes was ever observed. Thus, this parameter is not discussed further in this report." The Division is concerned by the lack of data and analysis provided by the report on this issue, particularly for Site 5 and the Turners Falls Impoundment, and requests that FERC direct FL to amend the report to include data supporting FL's claim that the frequency, amplitude and speed of boat wakes does not affect odonate emergence.	We did record observations of boats and boat wa observations in an updated report. Note that on M Natural Heritage or NHESP) and FERC to discus data for state-listed odonates species and other sp Sampling Plan to NHESP. On May 13, NHESP e air temperature, relative humidity and light intens listed odonates had been observed previously. Sin supplemental report by December 31, 2016 (here issues raised in the 2015 report (see response to c
MADFW-2	2.2.4 Quantitative Odonate Surveys	
	FERC's Study Plan Determination recommended that FL provide justification for conducting or not conducting odonate surveys due to precipitation events. As detailed below, weather conditions in 2015 appear to have been atypical, with frequent cool rainy weather and high-flow events between late May and early July. Additionally, the report confirmed that flow conditions in the Bypassed Reach during May and June 2015 were atypical due to controlled flows in support of other relicensing studies. The report states that surveys were timed to coincide with fair weather (warm air temperatures, dry and sunny days) and flow conditions (average to below- average flows) conducive to emergence. However, it does not provide any justification for conducting or not conducting odonate surveys in relation to atypical weather and flow conditions between late May and early July, sufficient to confirm that data were collected during typical emergence conditions. The Division recommends that FERC direct FL to revise the report to provide justification for conducting or not conducting odonate surveys relative to weather and flow conditions.	Weather and flow conditions were recorded on al some days (especially in June, when flows were l emergence. These observations will be included i
MADFW-3	3.2.5 Emergence and Eclosure Speed	
	The Division believes that anomalous environmental conditions appear to have affected this portion of the study. The report confirmed that cool rainy weather, cool water temperatures and frequent high-flow events from late May to early July – during what should have been the peak emergence period – created " <i>exceptionally poor emergence conditions for dragonflies</i> " and may have delayed or possibly prevented emergence.	As noted above, FL plans to collect supplemental in consultation with MADFW (see MADFW-1).
	Therefore, the Division requests that FERC direct FL to collect supplemental data re: emergence and eclosure speeds for odonates in 2016	
MADFW-4	3.3 Water Surface Elevation Analysis	
	The report provides key summary statistics for WSEL, daily rates of change in WSEL, and maximum rates of change in WSEL between May 15 and September 15. We request that FERC direct FL to include the following modifications in a revised report , to be submitted for public review and comment:	We fail to see how omitting the mid-August to m or significantly change the outcome. However, F will include only the 4am to 5pm timeframe, as r
	• WSEL data should be based on period May 15 to August 15 between 4 am and 5 pm.	
	Develop WSEL statistics for period 2010 to 2015 to determine if 2015 was representative.	As described further under the response to comm effects of water level changes on odonates at the as well as at additional locations in the these two during May and June 2015, FL was providing co- support of other relicensing studies; therefore, the reach during this period were atypical of bypass f

Study No. 3.3.10 Assess Operational Impacts on Emergence of State-Listed Odonates in the Connecticut River

akes at all sites, on all sampling dates, in 2015 and we will include these May 9, 2016, FL had a conference call with MADFW (specifically MA ss supplemental field work to obtain additional emergence and eclosure pecies underrepresented in 2015. On May 10, FL emailed the 2016 Field emailed FL approving the plan with a request to collect information on sity. In addition, NHESP provided maps showing locations where stateince additional data will be collected in 2016, FL is proposing to file a einafter referred to as the "2016 report") that addresses some of the comments below) and reports on the data collected in 2016.

Ill of the days that were sampled in 2015. Although flows were high on high throughout the entire month), weather was always optimal for in the 2016 report.

emergence and eclosure data for state-listed dragonfly species in 2016

nid-September WSEL data from the analysis would improve the analysis FL will comply with this request from MADFW. In addition, the analysis requested.

nent MADFW-10, FL will use the hydraulic model to evaluate potential 2015 survey locations in the TFI and downstream from Cabot Station o reaches. With regard to the bypass reach, as explained in the report, pordinated flow releases from Turners Falls Dam in the bypass reach in the frequency and magnitude of water level fluctuations in the bypass flow conditions.

Commenter	Comment	Responses
MADFW-5	4.2 Potential Effects of Project Operations	
	The Division requests that FERC direct FL to include the following modifications in a revised report, to be submitted for public review and comment:	The species-specific analysis should be possible field data collection in 2016, and will be considered
	• Use median and quartile vertical crawl distances.	
	• Include additional risk assessment based on the max rate of water level change at each site.	
	• FL provides information regarding the percent of odonates at risk at each of the five quantitative survey sites - a risk assessment for the odonate community as a whole - and argues that " <i>neither the hourly/daily changes in WSEL nor rates of change appeared to have a strong effect on odonate emergence</i> " at Sites 1 (Third Island, ~5 miles downstream of Cabot Station) and 2 (Route 116 Bridge, ~10 miles downstream of Cabot Station). It also suggests that at Barton Cove, odonate emergence does not appear to be affected. The data/analysis provided does not support such assertions because the report does not include a risk assessment for each state-listed species or species group at each site.	
MADFW-6	Similarly, FL suggests that water level fluctuations and rates of changes resulting from Project operations may affect odonate emergence at Sites 3 and 4, and therefore in areas of the Connecticut River closer to Cabot Station. However, FL limited the risk assessment for Sites 3 and 4 to the odonate community as a whole, which may mask more severe impacts to specific state-listed species and impede efforts to develop targeted recommendations.	See MADFW-5.
	Therefore, we request that FERC direct FL to revise the report to include species specific risk assessments, particularly for state-listed species or species groups, as suggested below. This will enable the Division and other resource agencies to develop more accurate operational recommendations to help avoid and minimize impacts to both the odonate community, in general, and for each state-listed species specifically.	
MADFW-7	Suggested Method for Risk Assessment	
	For a risk assessment across the entire Project area, the Division recommends analyzing critical height quantiles for each state-listed odonate species. This assessment should include the additional eclosure time data as requested herein. For purposes of their example, the Division used a more conservative estimate of eclosure time (3 hours).	Based on the supplemental surveys conducted in real data for eclosure time, rather than the arbitr
MADFW-8	In the absence of data confirming FirstLight's observations that no disturbance from boat wakes was observed at the monitoring sites, the Division recommends that 0.23 ft be added to the climbing height quantiles to account for effects of average boat wakes.	FL did collect data on boat activity and boat wa the Turners Falls impoundment. Thus, we will u has suggested.
MADFW-9	In the absence of additional data on emergence and eclosure speed, as requested herein, the Division does not agree with FL's proposal to use 2 hours as a representative eclosure time.	FL plans to collect supplemental data in 2016 to
MADFW-10	The Division requests that FERC direct FL to use the hydraulic model - which can accurately predict changes in WSEL and rates of changes to WSEL throughout the Project area - to assess the effect of WSEL changes on the emergence of state- listed odonates throughout the Project Area. This will allow comparison of affected areas under alternative flow regimes and help the Division and other resource agencies to develop operations recommendations that avoid and minimize impacts to state-listed odonates.	FERC's February 21, 2014 Study Plan Determin (one per survey reach) would provide the data n emergence success and <u>potential project effects</u> Nevertheless, the hydraulic model can be applie downstream from the Montague USGS Gage us in the bypass reach for this issue because the by In addition, FL will use the hydraulic model to a additional locations in the TFI downstream from report.

e assuming sufficient sample sizes are collected during supplemental ered in the 2016 report.

n 2016, FL plans to develop species-specific risk assessments and use ary 3 hours that MADFW has suggested.

akes at all of the survey sites in 2015, and FL has some boat wake data for use real data in the analysis rather than the arbitrary 0.23 ft that MADFW

refine the eclosure times (see MADFW-1).

nation on page B-57 states, "Deployment of four water level loggers eeded to standardize measurements and adequately evaluate odonate (section 5.9(b)(5) and (7))."

ed to the 2015 study areas in the Turners Falls Impoundment (TFI) and sing existing models. FL is not proposing to conduct additional modeling pass flow regime is likely to change as a result of the licensing process.

evaluate potential effects of water level changes on odonates at 1 the Montague USGS Gage. This analysis will be provided in the 2016

Commenter	Comment	Responses
TNC-1	Task 4 of the August 14, 2013 Revised Study Plan (RSP) stated that "Water level data will be used to identify the zones along each transect that have low, moderate, to high inundation frequency" (p. 3-241 of the RSP). However, we did not see any assessment of inundation frequency in the Study Report. It follows that further analyses based on inundation frequency were also not included, specifically: " The abundance, density, and species composition of emerged odonates will be compared along a gradient of inundation frequency. In addition, the influence of water level, habitat characteristics (substrate, vegetation cover, elevation), and weather conditions on emergence distance will be determined using correlation and regression analyses" (p. 3-241 of the RSP). These analyses were not included in the report.	Some of the analyses were not possible or severe Rather than evaluating zones of inundation freque explained above to evaluate potential effects of v
TNC-2	Task 5 of the RSP states "A hydraulic model, which will be developed for the whole study area independent of the odonate study, will be used to determine if water level fluctuations affect the emergence and eclosure success of state-listed odonates" (p. 3-241 of the RSP). However, the hydraulic model was not used in the analyses. Andrea Donlon of the Connecticut River Watershed Council raised this issue at the March 16, 2016 Study Report Meeting, and FirstLight stated that it would need to review the study plan before responding to her comment. Upon doing so, they stated (as reported in the March 31, 2016 Study Meeting Summary or SMS) that "The FERC study plan determination (pages B-57 and B-58) recommended that FirstLight deploy water level loggers at each of the survey locations to evaluate water levels. Therefore, FirstLight used the empirical water level data collected in 2015 to evaluate the impacts of water level fluctuations on odonates." However, this was not our understanding of FERC's study plan determination (SPD). On page B-48 of the SPD, FERC acknowledges that FirstLight "proposes to utilize results of its proposed hydraulic model (study 3.2.2) to categorize odonate occurrence data along a gradient of inundation frequency" and makes this acknowledgement again on page B-56: "FirstLight proposes to compare the abundance, density, and species composition of emerged odonates along a gradient of inudation frequency provided by the hydraulic model (study 3.2.2)." The need for water level data was also indicated in FirstLight's study plan, but methods for its collection were not described explicitly; as stated by FERC: "FirstLight's proposal indicates that it would collect water level data as part of this study. While FirstLight deploy a water level logger (with the capability to record temperature) set to record data at 15-minute intervals, at each of the quantitative survey locations to accurately evaluate water level, and awas outlined in FirstLight's study proposal, as was the use of the hydraul	See MADFW-10.
TNC-3	Task 5 of the RSP states "The field data gathered during Task 4, particularly the timing (e.g., when species emerge), distance travelled (both horizontal and vertical), and duration (i.e., speed) of travel and eclosure for species and/or species groups will be used in concert with the hydraulic model to determine which species are most vulnerable to fluctuating water levels, and under what conditions they are most susceptible" (p. 3-241 of the RSP). Whereas some of these analyses were referenced in the discussion, data and results were not included in the results section of the report. Therefore, it was not clear what data and results were being referenced for making statements and conclusions in the discussion. At the Study Meeting Summary on March 16, 2016, FirstLight showed an example of the results of this analysis in a table, yet there were no tables of this analysis included in the report. Tables and figures should be included comparing the field data (i.e., timing, distance, and duration as listed) to the water level and hydraulic data, as stated in Task 5 of the RSP. Similarly, Task 6 of the RSP states that a "Water Level Impact Assessment" would be included in the Results (p. 3-242 of the RSP), but only a "Water Surface Elevation Analysis" that did not include an evaluation of impact to odonates was included in the report Results section.	All materials in the presentation were either take convey information quickly in a 15-minute oral p FL is targeting the collection of additional specie analysis. See MADFW-10 for a discussion of water level
CRWC-1	Page 3-28 of the RSP states, "To some extent, a thorough review of existing information will provide adequate biological information for an impact assessment using the hydraulic model, but field observations are planned to fill critical knowledge gaps by conducting surveys in both the Turners Falls Impoundment and downstream from the Turners Falls Dam." The purpose of the field work was to fill in data gaps. However, the Study Report only looked at the gap areas, and did not assess project operations on the Turners Falls impoundment using the existing data as was implied in the RSP.	See MADFW-10.
CRWC-2	Task 1 was to be a review of existing information, and "the life history and ecology of these species and species groups will be summarized." The first paragraph in section 4.1 of the report gives a slight mention of some existing information, but in no way was the existing information summarized. And for some reason, a study conducted in 2011 by Biodrawversity as part of a Massachusetts Department of Environmental Protection (MassDEP) Administrative Consent Order against FirstLight for the 2010 sediment dumping incident was never even mentioned.	The paucity of data on the key parameters for ou limited this aspect of the final report. FL is expect can summarize information for species and species

ely limited by low sample sizes.

uency at transects, FL proposes to utilize the hydraulic models as water level changes on odonates.

en directly from, or distilled from, the final report and were intended to presentation.

es-specific information in 2016 that will help improve that aspect of the

impact assessment.

ar analysis (climbing height, climbing distance, and eclosure speed) ecting some additional data will be available after the 2016 sampling, and evices groups in the 2016 report.

Commenter	Comment	Responses
CRWC-3	Task 5 was to be a water fluctuation impact assessment using the hydraulic model. No such impact assessment was done using the hydraulic model.	See MADFW-10.
CRWC-4	The FERC study plan determination dated February 21, 2014 stated, "As such, we recommend FirstLight use the quantitative data collected under study 3.1.2, such as frequency, amplitude, and speed of boat wakes when evaluating effects on odonate emergence. We estimate that the cost of including this data in the odonate analysis would be approximately \$2,000." The resulting report in section 2.2.3 says merely, "Boat traffic was extremely light at all sites on all dates, and no disturbance from boat wakes was ever observed. Thus, this parameter is not discussed further in this report." Given that the field work was largely done below the Turners Falls dam, in a section that gets almost no motor boat traffic (it's the only section of the Connecticut River in Massachusetts that is actually regulated as a no-wake zone), it's not surprising that no disturbance was observed. However, that is not what FERC asked for. The Turners Falls impoundment gets much boat traffic, enough that the erosion study is looking at it as one of the causes of erosion. The analysis should still be done.	See MADFW-1 and MADFW-8.

Study No. 3.3.11 Fish Assemblage Assessment

Commenter	Comment	Responses
USFWS-1	Boat electrofishing results in the TFI are reported as Catch Per Unit Effort (CPUE) using a "standard" shoreline distance of 500 meters. We understand that FL chose this method of presenting the data in order to allow comparison to historical surveys. However, a consequence of calculating effort based on a set distance is the reported variability in actual electrofishing effort, or seconds that electricity is applied in that sampled distance. This presents difficulties when making comparisons among the data. Based on the data provided in the report (Table 4.2.1-2), actual electrofishing effort was significantly different for early summer versus late summer for the twelve events in both time periods (t-test, P<0.001, power at alpha 0.05: 0.996), with a mean effort of 1,456.9 (standard deviation 146.6) seconds vs. 1,873.0 (S.D. 272.2) seconds for the early and late summer periods, respectively.	The attached tables (<u>Study 3.3.11 Attachment A</u>)
	In the early summer samples, the minimum sample effort was 1,119 seconds and the maximum was 1,672 seconds, a difference of 553 seconds of effort, or in relation to the minimum value, a difference of 49.4 percent more effort between the two extremes. In the late summer samples, the minimum effort was 1,439 seconds and the maximum was 2,339, a difference of 900 seconds of effort, or in relation to the minimum value, a difference of 62.5 percent more effort between the two extremes.	
	We request that FL re-analyze and report the data in terms of actual electrofishing effort, to allow for direct comparisons between seasons, among strata, and even within strata. Also, the fish per minute approach could be applied to the 500 meter sections as well. As an example, if 50 fish were sampled in the early summer on the "shortest" timed sample run, that would yield a CPUE of 2.68 fish/min (1,119 seconds). Alternatively, the "longest" timed sample run in the early summer (with 50 fish caught) would yield a CPUE of 1.28 fish/min (1,672 seconds). However, in the current report approach, both catches of 50 fish would be reported as the same, for covering a distance of 500 meters. The report should include results from both methods of analyzing CPUE (set distance and set shock duration).	
USFWS-2	According to the study report, QHEI indexes the types and quality of substrate, instream cover, channel morphology characteristics, riparian zone extent and quality, bank stability and condition, gradient, and pool-riffle-run quality and characteristics. The report provides none of the field data that were collected and used to calculate QHEI scores at each station. The Service requests that those data be included in the report and provided on the relicensing website in a spreadsheet format.	The attached matrix table (<u>Study 3.3.11 Attachm</u>
USFWS-3	While lengths and weights were taken on sampled fish, those metrics are not discussed in the body of the report. The only reference to those data is provided in a table on page 128 of the report and the data are presented by species for all stations combined. We request that FL provide length and weight data for each species collected by season and station and make the raw data available on the relicensing website in a spreadsheet format.	The attached tables and figures (Study 3.3.11 Att summarize length and weight data. The Word D data contained in the Excel spreadsheet. The Exc
MADFW-1	Electrofishing catch data should be reported based on shock time not distance as the time it took to shock the "standard" shoreline distance of 500 m varied dramatically in the study (50% in early summer and 60% in late summer according to an USFWS analysis). Data should be re-analyzed to reflect this measure of effort.	The attached tables (Study 3.3.11 Attachment A)

) include Catch Per Unit Effort (CPUE) using time instead of distance.

ent B) summarizes the QHEI scoring attributes.

tachment C, Word Document, and Study 3.3.11 Attachment C, Excel) bocument, which includes tables and figures was developed from the cel spreadsheet is being filed separate from this document.

) include Catch Per Unit Effort (CPUE) using time instead of distance.

Commenter	Comment	Responses
MADFW-2	According to the report, QHEI indexes the types and quality of substrate, instream cover, channel morphology characteristics, riparian zone extent and quality, bank stability and condition, gradient, and pool-riffle-run quality and characteristics. The report provides none of the field data that were collected and used to calculate QHEI scores at each station. The Division requests that those data be included in the report and provided on the relicensing website via spreadsheet format.	The attached matrix table (Study 3.3.11 Attachme
MADFW-3	While lengths and weights were taken on sampled fish, those metrics are not discussed in the body of the report. The only reference to those data is provided in a table on page 128 of the report and the data are presented by species for all stations combined. We request that FL provide length and weight data for each species collected by season and station and make the raw data available on the relicensing website in a spreadsheet format.	See USFWS-3.
TNC-1	Our first comment is in response to a statement made at the Study Report Meeting on March 16, 2016. At this meeting, FirstLight stated that some areas where they sampled "didn't meet IBI criteria" (Study Report Meeting Summary, p. 8). The meaning of this statement is unclear, as FirstLight was not asked to conduct an IBI. We are concerned that there were some additional sampling criteria used that were not stated explicitly in the report and that might bias results. For example, if FirstLight only sampled "river bends with stretches of rich, suitable substrate (i.e., gravel/cobble/boulder), object cover or vegetation that provided good fish habitat" when "much of the shoreline in the upper TFI was relatively barren of optimal cover and substrates" (as stated on p. 2-3 of the Study Report), such targeted sampling could severely bias the fish distribution results and negate the intention of the stratified-random sampling design. Only sampling "good" fish habitat when there is little of this habitat will bias results toward over-representing this "good" habitat and therefore the fish community at these sites. We	FL did not conduct an IBI study. No IBI metrics I report: <i>Because one of the study goals was to com</i> <i>comprehensive Connecticut River fish assemblag</i> <i>Yoder & Kulik, 2003) were followed.</i> " Altho to make comparisons to historic data. Since the me protocols, it is logical to use the same or similar m comparison.
	ask that FirstLight please clarify the meaning of these statements and fully document all sampling criteria that were used.	FL did not "only sample river bends with stretcher Yoder (2002) states that "Individual sampling site in accordance with established methods This Seventeen candidate electrofishing stations with upper, middle and lower strata, respectively. For random from among the candidate sites from ea
		Such sites typically have the highest species richr objective 1 (Document species occurrence, distrib study area along spatial and temporal gradients), a likelihood of detecting the most species present. T this study detected more species than any prior fis
		As further stated on p 2-3 of the report: "Two additional electrofishing stations were ran relatively uniform and barren shoreline areas." equal to those comprised of the richer habitat who unlikely that the sampling site selection biased th sampling station selection.

ent B) summarizes the QHEI scoring attributes

have been generated from these data. However, as stated on p 2-3 of the *npare data to historic surveys, methods developed for a recent* ge *boat electrofishing survey (MBI, 2014; Yoder, et al., 2010;* ough FL was not directed to conduct an IBI study, the licensee <u>was</u> asked ost recent and quantitative historic study followed IBI sampling nethods to provide data that support the requested quantitative

es of rich, suitable substrate". As stated on p 2-3 of the report: es are located along the shoreline with the most diverse habitat features is generally along the gradual outside bends of large rivers". a these features were identified, with four, four, and nine stations in the r each of the two sampling events, two stations were selected at ach stratum for electrofishing sampling...".

ness, and therefore were important sources of data for meeting study oution, and relative abundance of resident and diadromous fish within the as such sites would optimize species richness and therefore increase the This strategy benefited this study objective, as evidenced by the fact that sh surveys of the study area.

ndomly selected within each stratum from the remainder of the Thus the number of stations comprised of relatively barren habitat was ere generally greater species diversity could be expected. It is therefore the results. Appendix A of the report contains additional discussion of

Commenter	Comment	Responses
TNC-2	The remainder of our comments are primarily related to the second stated objective, particularly the piece related to describing the distribution of fish species in relationship to habitat. FirstLight chose to use an index to describe habitat, the Qualitative Habitat Evaluation Index (QHEI). However, we contend that this index, at least in the way it is presented in the report, obscures the actual habitat qualities such that it is not possible to understand patterns of fish distribution in relationship to habitat characteristics. Biologically speaking, the relationship of fish to habitat is more complex than a single numeric value. Indeed, the QHEI is dependent upon data describing "the types and quality of substrate, instream cover, serval characteristics of channel morphology, riparian zone extent and quality, bank stability and condition, and pool-run-riffle quality and characteristics," as stated in the Study Report. However, it was not clear in the report how the QHEI value was calculated and what it represented, how individual habitat characteristics contributed to the score at each site, or what the distinctions were between sites of "poor" and "rich" habitat quality. As it stands, QHEI is not an adequate representation of habitat since the definition and characteristics of habitat are limited to the view of the biologist developing the index. It therefore does not meet the stated objectives to "describe the distribution of resident and diadromous fish species within the reaches of the river and in relationship to habitat." To do so, FirstLight should evaluate fish distribution by component habitat metrics, and at the very least, provide the data of the component metrics to increase the transparency of the results and conclusions.	The distribution of fish species within reaches ar Information summarizing QHEI components is secopies of individual QHEI raw field data sheets a species distribution was related to habitat condition upper third to lentic conditions below French Kin smallmouth bass and fallfish, whereas the lowern dwelling species such as bluegill, pumpkinseed a were more common than smallmouth bass in the the upper TFI. Fallfish and smallmouth bass pref Crossman, 1973), which are more abundant in th lentic conditions (Coble, 1975; Heidinger, 1975; vegetation and dense debris cover, which are char generalists, including spottail shiner and yellow the impoundment area. This pattern of species di
TNC-3	We also request that FirstLight please provide the length and weight data collected for sampled fish in spreadsheet format on the relicensing website.	See USFWS-3.

Commenter	Comment	Responses
NMFS-1	To better quantify the effects of spillway and log sluice operation on sturgeon spawning, the report should bin velocities (e.g., < 1 ft/sec; 1-4 ft/sec; > 4 ft/sec) vs spawning habitat (square meters) for each model run. To better quantify effects to early life stages, the report should summarize the amount of substrate (square meters) that becomes mobile for each model run.	FL plans to perform these analyses and will includ for the Project.
NMFS-2	The Licensee states:While flow from Turners Falls Dam and other sources have their own accuracy variation and steady-state conditions rarely exist, calibration to measured WSELs were generally in the ± 0.25 ft during the calibration periods (close to steady-state conditions) that were used during model development. The model also achieved a calibration to measured velocities generally in the ± 15% range.While both calibration standards are acceptable, no data is provided to verify the accuracy. Also, both water depth and velocity are directly related to bed shear stress. The report should discuss the implications of these parameters variance on the results from the sediment transport analysis.	Detailed information on the calibration to the meas which will be filed with FERC on October 14, 201 parameters will be provided in the amended Final
NMFS-3	The Licensee states: A common way to determine substrate mobilization potential is by comparing a location's shear stress to the critical shear stress of the substrate found at that location. There are numerous ways to evaluate sediment transport. Please provide a citation or further explanation of the methods used in this study.	The basic premise of the methods used in the study mobilize sediments delivered to the channel. When be in equilibrium. Where shear stress is excessivel result. Where the shear stress is less than critical st the Stream Geomorphic Assessment Handbook by <u>3.3.12 Attachment A</u> .

Study No. 3.3.12 Evaluate l	Frequency and Impac	t of Emergency Water (Control Gate Discharge	Events and Bypass Flume	e Events on Shortnose Sturged	on Spawning and	Rearing Habita
	1 / 1	8 1	8	J 1	8	1 0	8

nd relation to habitat was discussed in section 5 of the report. summarized in the attached table (<u>Study 3.3.11 Attachment B</u>), and are provided. Regardless of the QHEI, as noted in the report, fish ions. There is a gradient of habitat in the TFI from lotic conditions in the ng Gorge. The upstream stratum of the TFI was dominated by most stratum of the TFI which is lentic in nature is dominated by pondand yellow perch. Largemouth bass (another pond-dwelling species) clower TFI, whereas smallmouth, are more common than largemouth in fer habitat with gravel and cobble substrate, free of fines (Scott & ne upper impoundment, whereas sunfish and largemouth bass prefer Trial *et al.*, 1983), and substrates dominated by fines, as well as aquatic aracteristic of the lower impoundment but absent further upriver. Habitat perch were both dominant and generally evenly distributed throughout istribution was consistent with observations by MDFG (1978).

it in the Tailrace and Downstream from Cabot Station

le them in the Biological Assessment for Shortnose Sturgeon prepared

asured water depth and velocity will be available in Study Report 3.3.1 16. The sensitivity of the calibration and the effects on these License Application.

ly methods are: "Critical shear stress is the shear stress required to en the shear stress equals the critical shear stress, the channel will likely ely greater than critical shear stress, channel degradation will likely shear stress, channel aggradation will likely result." See Appendix O of y the VT Agency of Natural Resources which is included as <u>Study</u>

Commenter	Comment	Responses
NMFS-4	The Licensee states: Critical shear stress is the shear stress at which a particle has a 50% chance of being mobilized from the river channel. This is incorrect. Critical shear stress of a particle is not a probability function. The report should depict the equations that are used to calculate Shear Stress and Critical Shear Stress.	As noted on page 56 of <i>Sedimentation Engineeri</i> conditions the motion of grains in any small area stress increases. Observation of a large area of a that the incidence of gusts of sediment motion ap by Shields (1936), that the process of initiation o a transport relation based on statistical concepts. ⁴ Furthermore, as also stated in Vanoni (2006), Ge (which is directly relatable to critical shear stress shear stress τ_c was defined as the value that relate We adopted this definition for our study, and we the moment the bed shear stress exceeds the stud Particle movement occurs when the directional fe stress at this threshold is referred to as critical sh even for equally sized particles since the positior same. This simplified assumption also does not t simplicity purposes, this study defined critical star recognize, however, that the sediment transport I (2006) such as White (1940), maintain that there
		To conclude, we believe that the differing critica stress thresholds that were used in this study.
NMFS-5	The Licensee states: We arbitrarily chose 10 mm as the cutoff point to switch between the two equations. We request further reasoning for this switch to another set of empirical data.	The relation between grain diameter for entrainm shown in <u>Study 3.3.12 Attachment B</u> . For grain be more accurate than the limited data points abo figure is from Chapter 11 Rosgen Geomorphic C Handbook, published by the US Department of A recognize our 10 mm cutoff threshold is arbitrary multiple potential incipient motion thresholds that
NMFS-6	Figure 3.3.2-2 There is no mention of how this data was collected in the report. What methods were used? Are there particle size distributions available? More information is necessary to evaluate the adequacy of the sediment transport analysis.	Substrate data were collected as part of the IFIM given location - no particle size distribution data flows when much of the reach was wadeable. So probe or a weighted braided line dropped to the r
NMFS-7	Figures 4.3.1-1 to 4.3.1-9 The difference in velocities for each of the scenarios is apparent, but the effect on shortnose sturgeon habitat is not clear to the reader. The figures should bin velocities based on shortnose sturgeon preferred habitat of 1 to 4 fps. If baseline velocities are within the preferred range and emergency gate spill scenarios are outside the preferred range, the area of potential affect should be shown. In addition, if negative effects are determined, the habitat area change should be quantified.	FL plans to update these figures and include ther Project.

ing (ASCE Technical Manual 54, Vanoni, updated 2006), "Near critical a of bed occurs in gusts whose incidence increases as the mean shear sediment bed when the shear stress is near the critical value will show oppears to be random in both time and space. This suggests, as observed of motion is statistical in nature. Einstein (1942) was the first to develop

essler (1965 and 1970) found that dimensionless critical shear stress τ_{*c} s τ_c) and thus particle movement is a probability function, where critical ed to a 50% probability of particle motion.

ere simply noting that not all particles become immediately mobilized dy-identified mobilization thresholds.

Forces (shear) begin to overcome inertia and frictional forces. The shear near stress. However, it is impractical to provide one critical stress value in of particles and the fluid force vectors on the particles are not the take into account shear stresses caused by bed forms or bed slope. For ress as when a particle has a 50% chance of being mobilized. We also literature varies and other studies, including some noted in Vanoni e is a single fixed critical shear stress for any given particle.

shear stress definitions do not materially impact the critical shear

nent and shear stress using the Shields relation used the trendlines as size diameters above 10 mm, the Colorado data trendline was judged to ove 10 mm for the Leopold, Wolman, and Miller, 1964 trendline. This Channel Design of the Stream Restoration Design National Engineering Agriculture, Natural Resources Conservation Service. While we y, the 10 mm threshold represented our best attempt at combining at were derived from differing datasets.

I study. Substrate data were characterized by the dominant substrate at a were collected. Sediment size was typically characterized during low one of the deeper areas had to be characterized via boat using a metal riverbed.

m in the Biological Assessment for Shortnose Sturgeon prepared for the

Commenter	Comment	Responses
NMFS-8	Section 4.3.3	
	The Licensee states:	River2D is a two-dimensional, depth average mo
	River 2D model results are representative of conditions throughout the modeled area except in areas within 150 feet of the Cabot Station and the emergency spillway gates.	are a major component of the velocity field. Wh the information shown in these areas in the figure area during the modeled spillway operations.
	We don't understand the reasoning for this exclusion of results. Please verify that this information will be explained in Study 3.3.1. Does the Licensee mean 150 feet from the gates or the apron of the spillway? If this data is excluded, why is it shown in all the figures?	
NMFS-9	Figures 4.3.3-1 to 4.3.3-9	
	The figures clearly show that spill from the emergency gates increases sediment mobility potential for most, if not all of the scenario comparisons. The Licensee should quantify the affected area to determine the effects of spill from the emergency spillway gates.	FL plans to perform these analyses and will inclu for the Project.
NMFS-10	Section 5	
	The discussion section does not evaluate the lack of sediment input from upstream reaches. The absence of sediment recruitment, other than suspended load, to the spawning beds may exacerbate the effect of mobile sediment during emergency spill gate operations at Cabot Station. In addition, the effects of bedform or sediment composition should be discussed.	Evaluating sediment input from upstream areas is sediment recruitment from upstream, then there we therefore less potential for sediment mobilization

Study No. 3.3.18 Impacts of Turners Falls Canal Drawdown on Fish Migration and Aquatic Organisms- Addendum

Commenter	Comment	Responses
USFWS-1	Based on the approved study plan, only objectives 2 and 3 have been completed to date. Study objective 1 requires results from Study 3.3.3 (Evaluate Downstream Passage of Juvenile American Shad) and 3.3.5 (Evaluate Downstream Passage of American Eel) and those study reports have yet to be issued. Objective 4 calls for evaluating measures to minimize aquatic organism population impacts of the canal drawdown. The March 31, 2015 study report identified two potential measures to enhance aquatic organism survival: (1) conducting the rate of canal drawdown similar to how it occurred in 2014 to allow time for fish to egress the canal and for mussels and sea lamprey ammocoetes to burrow into sediment; and (2) placing cones in areas where heavy machine ly travels and directing equipment operators to stay within these established boundaries to minimize the impacts to aquatic organisms due to vehicular traffic. However, these measures do not address the impacts of dewatering more than 90 percent of the canal or stranding in isolated pools.	FL plans to address this evaluation as part of Stud Shad) and 3.3.5 (Evaluate Downstream Passage analysis of study results from several different sp analyzed in Study Report 3.3.7 Entrainment Study
	Given the above, the Service requests that FERC direct FL to provide another addendum that addresses study objective 1 and initiate consultation with the agencies on potential minimization or mitigation measures to address impacts of the drawdown to aquatic organisms. For example, report data indicate that hydraulically connected pools had improved fish survival (sampling mortality section); therefore, FL could assess measures to enhance fish survival by increasing pool connectedness. Other means to reduce the impacts of the drawdowns need to be considered, given the large number of impacted organisms resultant from existing drawdown practices.	Once the study results from Studies 3.3.3 (Evalua (Evaluate Downstream Passage of American Ed the stakeholders, if needed.

odel resulting in less accuracy in areas where vertical flow distributions hile the River2D model has less accuracy near the apron of the spillway, res is indicative that sediment mobilization would generally occur in this

ude them in the Biological Assessment for Shortnose Sturgeon prepared

s outside of the scope of this study. Additionally, if there is a lack of would likely be less area and volume of sediment in the study area, and a due to emergency spill.

dy Report 3.3.3 (Evaluate Downstream Passage of Juvenile American e of American Eel). These two reports will include a comprehensive eccies specific studies. Results related to entrainment will also be y.

ate Downstream Passage of Juvenile American Shad) and 3.3.5 el) are complete, FL will discuss potential mitigation alternatives with
Study No. 3.3.20 Ichthyoplankton Entrainment Assessment at the Northfield Mountain Project

Commenter	Comment	Responses
USFWS-1	3. Methods, Analysis The study used the actual water withdrawn by the facility to estimate entrainment during the sampling weeks. Was this water withdrawal profile "typical" of facility pump back and operation during a spawning period? The Service recommends that FL calculate ichthyoplankton entrainment for a number of scenarios, including: (1) entrainment based on the actual pumping operation during the 2015 sample period; (2) entrainment based on "typical historical" pumping operations during the shad ichthyoplankton period (generally calculated from some number of pumping profiles from recent past ichthyoplankton season operation); and (3) entrainment based on pumping operation during the shad ichthyoplankton period under FL's proposed expansion of the Upper Reservoir's operating range.	Note that on April 25, 2016 FL had a conference Ichthyoplankton study. FL agreed to conduct addi widely year to year. Since additional data will be available no later than December 31, 2016 (hereir collected in 2016. The study will be conducted si whatever pumping flow occurs that evening and r year's study. FL also agreed to conduct offshore As requested by the resources agencies and specif (sampled pumping scenario without adjusting) an entrainment estimate was based on actual pumpin and the pumping based on the proposed expansion entrainment report.
USFWS-2	3. Methods, Analysis Due to the low numbers of eggs and larvae collected, the two sample locations (service water pipe and at the lower reservoir intake) could not be statistically compared. Therefore, we do not know whether ichthyoplankton densities at the service water pipe were representative of densities at the intake. Further, the intake samples were not collected in the manner described in the Study Plan; rather than doing the approved oblique tows, FL did mid-depth tows. This variance to the Study Plan could be one reason for the very low ichthyoplankton densities observed at the intake over the course of the study.	The report indicated mid-depth tows for the intake These tows consist of deploying the plankton nets minutes near the surface. A depth meter and an in
USFWS-3	4. Results Table 4.0-1 is consistent with Table 4.1-1 regarding the number of pumps in operation during a given sampling event. However, Table 4.1-2 shows one more pump in operation for sample Nos. 4, 7 and 19, compared with Tables 4.0-1 and 4.1-1. Also, samples 7, 8 and 9 in Table 4.2-1 show a date of June 17, 2015, while the text (Section 4.2) and the other tables show a date of June 18, 2015. These discrepancies should be clarified or corrected.	The discrepancies occurred from the date changin found in <u>Study 3.3.20 Attachment A</u> and <u>Study 3.</u>

call with NMFS, USFWS, FERC and MADFW to discuss the 2015 litional sampling in 2016 as ichthyoplankton abundance can vary collected in 2016, FL is proposing to make a supplemental report nafter referred to as the "2016 report") that summarizes the findings imilar to the 2015 study except sampling will occur once per week at no attempt will be made to manipulate the flows as required in last sampling (three tows) every night an entrainment collection is made.

fied in the RSP, some of the samples collected in 2015 were random d some were non-random (adjusted pumping for the study). The 2015 ng in 2015. FL will include the "typical historical" pumping scenario n of the Upper Reservoir's operating range in the 2016 ichthyoplankton

e samples, however, step-wise oblique tows were actually conducted. s for about 2 minutes on the bottom, 2 minutes at mid-depth, and 2 aclinometer were used to insure the nets were towed near the bottom.

ng during the sampling period. Corrected Tables 4.1-2 and 4.2-1 can be <u>3.20 Attachment B</u>.

Commenter	Comment							Responses
USFWS-4	5. Discussion							
	FL states that the low shad ichthyoplankton densities at the NMPS Project are most likely explained by the location of the actual spawning area, which was determined to be in the vicinity of Stebbins Island (at the upper extent of the TFI). The Service disagrees with this explanation for the following reasons:						The USFWS compares results of the 1992 entrait conducted by FL. They indicate that the results of similarly conducted. LMS calculated entrainment while the 2015 study sampled the actual water pro-	
	• It does not take into account the results of the 1992 entrainment study conducted by Lawler, Matusky, and Skelly Engineers (LMS 1993). Presumably shad are using the same spawning sites they did in 1992 (Study Report 3.3.6 notes that many of the active spawning sites identified in 2015 downstream of the Turners Falls Dam were sites documented in previous spawning studies conducted decades ago). Therefore, assuming some degree of spawning site fidelity and noting that roughly the same number of adult shad passed Turners Falls gatehouse in 1992 as passed in 2015 (60,089 and 58,079, respectively), it is reasonable to expect that estimated ichthyoplankton entrainment in 2015 should be somewhat similar to what was calculated in 1992. This assumption is also supported by juvenile index values calculated by the Connecticut Department of Marine Fisheries that were similar for both years (7.2 for 1992 and 8.5 for 2015). However, the data we summarize in Table 2 below show a marked difference between the two studies.					steam electric facilities. LMS specified in their fi was not as effective in collecting shad eggs and y their assumption that post yolk-sac larvae are ent lead to an overestimation of actual entrainment in FL study, there was no need to assume that ichthy pumped water which most likely led to a more ac		
	Table 2. Comparison of sh	nad egg and larval er	ntrainment at Nor	rthfield Mountain Pump	ed storage project bet	tween two s	studies.	
			Egg	Yolk-Sac Larvae	Post Yolk-Sac L	arvae		
	LM	IS Study (1992)	1,175,900	744,000	10,525,600			
	FL	Study (2015)	2,481,463	523,637				
	 The above-mentioned delay in starting the sampling and resultant lower egg and larval densities showed that spawning started well before sampling began. 							
USFWS-5	Service Recommendations	<u>s</u>						
	Given the deviations to the inability to validate that the and larvae collected throut require FL to conduct a set	the approved study p the service water pip ughout the study pe second year of study	olan (delay in ini pe samples are r priod, particularly y.	itiating sampling, failure epresentative of actual at the offshore sampli	e to use oblique tow entrainment, and the ng site, the Service s	s for intake overall lo strongly rec	e sampling), the ow numbers of eggs ommends that FERC	See USFWS-2. Oblique tows were conducted. F abundance varies widely year to year and the sec variation.
NMFS-1MethodsThe Ichthyoplankton Entrainment study was not conducted in accordance with the study plan FERC approved on January 22, 2105. The study deviated from the approved plan in both timing of study commencement and methodology of offshore sampling. Based on the approved study plan, sampling should have commenced once 5,000 shad had passed the Turners Falls Gatehouse fishway or by May 21st, whichever came first. Passage at the Gatehouse fishway reached the 5,000 shad trigger on May 13th, however sampling did not begin until May 28th, with validation sampling at the intake not beginning until June 9th. Daily shad passage counts at the Gatehouse window indicate that cumulatively, 45,377 shad had passed by the time entrainment sampling began on May 28th and 54,010 shad had passed by the time offshore sampling commenced on June 9th (Figure 1). The entire run of American shad counted at the Gatehouse window was 58,079. Therefore, 78% of fish had already passed at Gatehouse by the time the study began and approximately 93% had passed by the time offshore sampling commenced on June 9th. This timing is a significant deviation from the requirements in the approved study plan and resulted in the loss of several weeks of data collection.				FL acknowledges that the study was begun later Northfield Mountain and requires formaldehyde the formaldehyde. The chemical hood was order order and did not arrive in time for the start of th commenced. The validation samples were collec				

inment study conducted by LMS with the 2015 entrainment study of the two studies should be similar. However the two studies were not int based on nearfield sampling with ichthyoplankton nets near the intake, numped as EPA requires to determine ichthyoplankton entrainment at final study report that sampling results indicated that their sampling gear yolk-sac larvae as it was in collection of post yolk-sac larvae and that trained in proportion to their concentration in the water column may impact. By sampling the actual water pumped as was done in the 2015 hyoplankton densities in the river were similar to densities in the actual accurate ichthyoplankton estimate.

FL has agreed and has begun a second year of study. Ichthyoplankton cond year of study should provide information on this annual abundance

than the RSP assumed. Since the sampling was conducted inside of the as a preservative, FL safety requirements require a chemical hood for red well before the planned start of the study, however it was on back he study. As soon as the hood arrived it was installed and sampling cted as outlined in the RSP.

Commenter	Comment	Responses
NMFS-2	<u>Methods</u> The study also deviated from the approved plan in the sampling method used for offshore ichthyoplankton sampling at the intake channel. The study plan required bongo nets be towed "obliquely, from bottom to surface" for approximately six minutes or until at least 100 cubic meters of river water was sampled. However, bongo net tows were actually conducted at "mid- depth", disregarding data collection throughout the water column as required. This method of sampling could potentially account for the low ichthyoplankton densities in the towed samples. Since this variation in study methodology could potentially have affected the results, we recommend a second year of studies be conducted to ensure sampling is done properly across the entire study period, as required. On the conference call that was held on April 25th, 2016, FirstLight indicated that tows were conducted according to the agreed upon plan. The final report should accurately explain the bongo sampling technique that was used.	See USFWS-2.
NMFS-3	<u>Methods</u> According to the study plan, FirstLight was required to validate that densities collected at the service water pipe were representative of densities at the intake tunnel through paired sampling of both the service water pipe and the intake/tailrace channel. Due to the low number of eggs and larvae collected, the two sample locations could not be statistically compared and this validation could not be made. Over the course of the study, the sample size was relatively low with 23 entrainment samples and 12 validation samples being collected. When the samples are broken down under multiple pumping scenarios, it only allowed for sampling to be conducted for one to three sample dates. We recommend the second year of studies focus on collecting a larger sample size, particularly with the offshore intake samplings. The offshore sampling should be occurring concurrently with service water intake sampling. A larger sample size collected using the proper timing and methodology may allow for a more robust analysis.	As discussed on the conference call on April 25, entrainment samples are collected. See USFWS-
NMFS-4	Study Report Discussion The study report does not provide any discussion on the Lawler, Matusky, and Skelly 1992 entrainment study (LMS 1993). This study was conducted to estimate the number of juvenile shad the Northfield Mountain Project entrains in order to provide a basis for calculating the impact of the facility on the shad population (LMS 1993). Similar numbers of shad had passed the Turners Falls Gatehouse fishway in 1992 and 2015, 60,089 and 58,079 respectively; however, there were significant discrepancies in estimated ichthyoplankton entrainment, particularly with regards to the number of entrained larvae. The 2015 relicensing study found approximately 500,000 entrained larvae, whereas the 1992 study found 20 times more entrained larvae with an estimate of over 10 million (LMS 1993). The discrepancies between entrainment of shad larvae between the 1992 and 2015 studies should be further evaluated and used to inform a second year of ichthyoplankton entrainment studies.	See USFWS-4.
NMFS-5	Study Report Discussion The study report suggests the lower ichthyoplankton densities can be explained by the location of the spawning area being far upstream of the Northfield Mountain Project, referring to the Relicensing Study 3.3.6, Impacts of Project Operations on Shad Spawning, Spawning Habitat and Egg Deposition in the Area of the Northfield Mountain and Turners Falls Projects (shad spawning study). Based on our review of the shad spawning study, we do not agree that this conclusion is supported. Though the shad spawning study only observed splash counts in the Turners Falls Impoundment immediately downstream of Vernon Dam near Stebbins Island, as stated in our comments in Attachment A, this study can only confirm where spawning activity was observed, and cannot conclude spawning did not occur elsewhere in the river, including in the vicinity of the Northfield Mountain Project. Even the shad spawning study report states that "it is possible, and perhaps likely, that shad spawning occurred at times when no surveys were conducted, as well as at locations that were not identified by field crews". Below-surface shad spawning has been documented (Layzer 1974) and these spawning activities would not have been detectable through the data collection methods used for the shad spawning study. Furthermore, the 1992 study also identified spawning sites near the Northfield Mountain Project (LMS 1993), and shad tend to have some degree of spawning site fidelity (Hollis, 1948, Hendricks, <i>et al</i> , 2002, Nichols, 1960). Therefore, we disagree with the report's finding that suggests low shad ichthyoplankton densities were due to the lack of shad spawning in the vicinity of the Northfield Mountain Pumped Storage Project.	See USFWS-4.

, 2016, FL has agreed to collect 3 intake samples each time the 5-1.

Commenter	Comment	Responses
NMFS-6	Proposed Project Operation Modifications Under the Draft License Application, FirstLight proposes to increase year round operating range at the Northfield Mountain Pump Storage Project from a range of 938 ft- 1000.5 ft to a range of 920 ft- 1004.5 feet. This would result in a longer duration of pumping events. The study report neither studies nor evaluates how this new proposed operating range would potentially affect shad ichthyoplankton entrainment. This proposed change was not known during the study plan phase of the project, which may explain why this evaluation is not included in the current study report. This proposed modification to project operations would further support the need for a second year of ichthyoplankton entrainment studies. The second year of studies should include an evaluation of the proposed change in operating range on ichthyoplankton entrainment at the site.	This will be included in the 2016 Ichthyoplankton
CRWC-1	The start of the study was well after the initiation of spawning. Ten thousand shad passed the Gatehouse fishway on May 13. Entrainment surveying did not begin until May 28, fifteen days later.	See NMFS-1.
CRWC-2	The number of pumps evaluated was not evenly distributed during the period of the study. To evaluate the effect of pumping, the number of pumps tested (1 to 4) should have been tested equally through the period to account for unequal availability of eggs/larvae.	Sampling was conducted as described in the RSP.
CRWC-3	The report did not relate entrainment in 2015 to the "normal' year of pumping, or river flow.	See USFWS-1.
CRWC-4 3/25/2016 filing	From CRWC 3/25/2015 Comment Letter: Please provide the total time of pumping with 1, 2, 3 and 4 pumps, by week, from May 15 to July 15 for 2015 and for the period from 2006 to 2014 for the equivalent weeks. Please also provide the total time by pump for the nights in 2015 when samples were taken with more than one pump operating.	FL is providing herewith a) the total time of pump <u>Attachment C</u> and b) the total time by pump for the operating (see <u>Study 3.3.20 Attachment D</u>).

Study No. 3.4.1 Baseline Study of Terrestrial Wildlife and Botanical Resources

Commenter	Comment	Responses
MADFW-1	MADFW provided numerous comments on the list of species in Appendices D.	As part of this filing, FL has corrected the list of sp

Study No. 3.5.1 Baseline Inventory of Wetland, Riparian and Littoral Habitat in the Turners Falls Impoundment, and Assessment of Operational Impacts on Special-Status Species

Commenter	Comment	Responses
USFWS-1	Invasive Plant Survey	
	According to the approved study plan, aquatic invasive plants were to be documented using a sub-meter GPS unit to delineate the boundary of infestations. The report was to include field data in tabular format, including the species composition and estimated size of infestation.	Survey methods described within the MRSP state look-down buckets to aid in identification. SAV a point GPS with a radius offset that will encompas
	The only tabular summary of the invasive species data collected is a listing of the invasive species found in the TFI (Tables 4.2.2-5 and 4.4-1). While figures showing polygons of aquatic vegetation are provided, they only depict qualitative categories of submerged aquatic vegetation (SAV) density, with no reference to where invasive infestations occur within those beds or what percentage of the bed is comprised of invasives.	A table describing the species identified within mapping showing polygons of SAV beds which we collection in 2014 and 2015. The table describes to categories (sparse, medium, and dense). While no which SAV patches have infestations of exotic SA
	The report should be revised to include more detailed information on invasive species observed, including figures explicitly showing the locations of invasive SAV beds and a tabular summary of invasives data (i.e., bed size, species composition, etc.).	<u>3.5.1 Attachment A</u> .

Study	Report.
-------	---------

nping with 1, 2, 3 and 4 units from 5/15-6/15/15 (see <u>Study 3.3.20</u> the nights in 2015 when samples were taken with more than one pump

pecies (see <u>Study 3.4.1 Attachment A</u>).

e that "SAV and EAV beds will be surveyed from a boat with use of and EAV beds will have their perimeter surveyed or will have a center ss the entire bed."

happed SAV beds was provided in the current Study Report as well as were field delineated using sub-meter GPS technology during field data the area occupied by SAV beds which fall into one of three density of required by the MRSP, existing mapping has been modified to show AV. Updated SAV mapping has been included in this response as <u>Study</u>

Commenter	Comment	Responses
USFWS-2	Puritan Tiger Beetle The language in the report suggests that only 2012 WSE data were used in the analysis of project effects on PTB habitat, even though the hydraulic model was developed using data over a much longer time period. We request that FL clarify how both the 2012 water level logger data and below Cabot Station hydraulic model were used to assess operational impacts on PTB habitat. The Service would support using the 2012 data to validate the hydraulic model (given that the hourly time step of the hydraulic model is somewhat coarser than the 15-minute time step of the water level logger data), but do not believe it is appropriate to analyze impacts based on a single water year.	For the below Cabot Station hydraulic model, the boundary condition. FirstLight tried, but was una Holyoke Dam from Holyoke Gas and Electric, th in the study report, the downstream boundary wa surface of between 1.2 and 0.5 feet at river flows tiger beetles. As shown in Figure 4.6-4, the perio fluctuations as measured at the Montague USGS FL. However, at points farther upstream, especia becomes much less of an influence and is general water levels at the Holyoke Dam and since the 20 was determined to be most accurate and characte Beach for this study.
USFWS-3	Puritan Tiger Beetle In addition, all models (Figures 4.6-3 through 4.6-11) should be limited to the period May through August. Adult beetles have typically died by late August, therefore inclusion of flow data from September may bias estimates of typical WSEs.	FL has committed to filing an addendum on this data from the analysis should be removed from the statement of the statement o
USFWS-4	Puritan Tiger Beetle The report only provides figures from four transects. We recommend that FL analyze data from all of the transects to estimate the total amount of suitable habitat and the percent of time that habitat is unavailable based on operations data from May through August of 2008 through 2015.	The RSP did not call for a specific number of sur representative of the habitat available at Rainbow central, and southern sections of Rainbow Beach characteristics of the elevations observed on Rain the vast majority of elevations observed, and ther transect elevations are very similar with elevation feet) and therefore analysis of water levels was co locations. All elevation data collected as part of (Excel file). The Excel spreadsheet is being filed
USFWS-5	Cobblestone Tiger Beetle According to the approved Modified Revised Study Plan (MRSP), FL was to use a combination of hydraulic modeling and field data to assess effects of project related water level fluctuations on known and potentially suitable habitat for the CTB. However, the report does not include an assessment of water level fluctuation at the Montague site, nor does it provide an explanation for why the assessment was not completed. As the Montague site represents known, suitable habitat (albeit potentially currently unoccupied), the same analysis that was completed at Rainbow Beach and North Bank for the PTB should have been conducted at the Montague site for CTB.	In 2014 additional transects were established at the beetles are presumed to be extirpated from the har agrees to establish additional transects (6) at the collected in a similar manner to Rainbow Beach including an analysis of WSEL as well as the dur described in USFWS-3.
USFWS-6	Cobblestone Tiger Beetle Re: This omission is a variance to the approved MRSP. In fact, a MRSP was required, in part, to incorporate recommendations of FERC and the NHESP with respect to this very issue. FERC's Study Plan Determination (SPD) confirmed that "assessing impacts on potential unoccupied habitat that might otherwise support viable populations of state-listed invertebrate species under modified flow regimes is just as important as an assessment of occupied habitat because this would allow us to develop appropriate, data-driven flow recommendations that may be needed to protect or enable use of potential unoccupied habitats." Further, the SPD recommended that FL incorporate additional transects in unoccupied areas with suitable habitat sufficient to permit assessment of how the quality and extent of both existing and potentially suitable habitat changes over a range of flows.	See USFWS-5.

e water level just upstream of the Holyoke Dam is the downstream able to obtain historical water level data as measured upstream of he owners and operators of the Holyoke Dam. As shown in Figure 4.6-3 ater level used in the hydraulic model can make a difference in the water s less than 11,000 cfs at Rainbow Beach, the key location of the Puritan of of May 1 to October 1, 2012, contained a wide range of daily flow 6 gage, especially representative of changes that could be controlled by ally above the Route 116 Bridge, the effects of the downstream boundary ully less than 0.10 feet. Due to inability to obtain downstream boundary 012 data contained a large number of representative days, the 2012 data eristic of the water level changes from flow variations at Rainbow

study by October 14, 2016 Given this ,FL agrees that the September he analysis- this change will be included in the addendum.

rvey transects. The transects selected for inclusion were chosen to be w Beach and a review of surveyed transect elevations at the northern, a. Each representative transect was selected based on the general nbow Beach. The three transects used in the analysis cover the range of refore additional transects were not developed. Along the beach ns ranging from 101.3 feet to 115.9 feet (average elevation of 104.6 completed for a representative transect rather than for all 24 transect the transect survey have been included as <u>Study 3.5.1 Attachment B</u> l separate from this document.

the Rainbow Beach and North Bank locations, as cobblestone tiger abitat near the confluence of the Deerfield and Connecticut River. FL unoccupied habitat near the Deerfield confluence. Data will be (i.e., RTK GPS). Transects will be analyzed in the same manner ration of inundation. This analysis will be included in the addendum

Commenter	Comment	Responses
USFWS-7	Cobblestone Tiger Beetle	
	The Service requests that FERC direct FL to collect elevation survey data at no less than six transects placed in suitable habitat at the Montague site during the 2016 field season. These data, in conjunction with the 2-D model developed as part of the IFIM Study No. 3.3.1, the Montague USGS gage water level logger data, and operations data from 2008 through 2015 for the months of May through August, should be used to assess project effects on CTB habitat. Results of the water level fluctuation evaluation at this site, and a discussion of those results, should be included in a revised Study Report submitted for public review and comment.	See USFWS-5.
MADFW-1	Cobblestone Tiger Beetle	
	According to the MRSP, FL proposed to use a combination of hydraulic modeling and field data to assess potential effects of Project related water level fluctuations on known and potentially suitable habitat for the CTB. However, the report does not include an assessment of water level fluctuations at the known CTB site, nor does it provide an explanation for why the assessment was not completed. This is a variance from the MRSP as well as the FERC Study Plan Determination.	See USFWS-5.
	The FERC Study Plan Determination recommended that FL incorporate additional transects in unoccupied areas with suitable habitat sufficient to permit assessment of how the quality and extent of both existing and potentially suitable habitat changes over a range of flows. Therefore, as this site represents known, suitable habitat for CTB, the same analysis completed at Rainbow Beach and North Bank for PTB should be conducted at this site for CTB.	
	The Division reiterates that assessing how Project operations <i>have</i> or <i>may</i> potentially affect the quality and extent of habitat at both occupied and suitable, unoccupied sites is critical to developing data-driven flow recommendations. Therefore, the Division requests that FERC direct FL to complete Task 6b (Water Level Fluctuation Evaluation) for this site per the MSRP. Additionally, depending on the accuracy of data collected during development of the 2-D model, collecting additional elevational data via transects placed throughout suitable habitat at this site may be warranted . Results of the water level fluctuation evaluation at this site, and a discussion of those results, should be included in a revised report submitted for public review and comment.	
MADFW-2	Puritan Tiger Beetle	
	According to the MRSP, FL proposed to use unsteady HEC-RAS hydraulic models, developed based on observed conditions that occurred from January 1, 2008 to September 30, 2015 for the reach between the Montague Gage and the Holyoke Dam. FL installed two water level loggers during 2012, one at the Route 116 Bridge in Sunderland and one near Rainbow Beach. FL states that the measured 15-minute interval WSELs in 2012 from the water level logger at Rainbow Beach were used to estimate effects of discharges from the Turners Falls Project on water levels at Rainbow Beach (up to the Project's maximum hydraulic capacity).	See USFWS-2.
	The Division supports using the 2012 data to validate the hydraulic model for Rainbow Beach and the North Bank, given that the hourly time step of the hydraulic model is coarser than the 15-minute time step of the water level logger data. However, we do not believe it is appropriate to analyze operational impacts based on a single year of data. Use of multiple years will ensure data are fully representative of typical Project operations and weather conditions, capture the full range of variability seen from year to year, and refine model accuracy. Therefore, the Division requests that FERC direct FL to clarify how both the 2012 water level logger data and the hydraulic model (from below Montague Gage) were used to assess operational impacts on PTB habitat.	
MADFW-3	Puritan Tiger Beetle	
	In assessing operational impacts to PTB, the hydraulic model and all data should be limited to the period spanning May through August of any year.	See USFWS-3.
MADFW-4	Puritan Tiger Beetle	
	The report models the percent of time various WSELs are experienced at Rainbow Beach. We recommend that a similar analysis be provided for the North Bank PTB habitat.	An analysis of WSEL will be completed for the and as described above the analysis will now in included in the addendum.

e North Bank location, similar to the Rainbow Beach site. In addition, nclude a discussion of the duration of inundation. The analysis will be

Commenter	Comment	Responses
MADFW-5	Puritan Tiger Beetle The report only provides figures for three of the twenty-four transects collected at Rainbow Beach, and one of the four transects collected at the North Bank. We recommend that FL include figures for all transects, and that FL analyze data from all transects to estimate the total amount of suitable habitat that is inundated at each flow at each site. Further, FL should provide estimates of the percent of time habitat is unavailable from May through August of each year from 2008 to 2015 on a monthly, annual and averaged (over 2008-2015) time step for both Rainbow Beach and the North Bank. Similarly, because even one large event during the adult active period may wash away adults and result in mortality and/or displacement of adult beetles, we recommend that the report include an assessment of how many times all or most (greater than 80%) of the suitable habitat at each site was inundated from May through August of each year from 2008 to 2015 when inflow is within Turners Falls generation capacity.	See USFWS-4.
MADFW-6	4.3 RTE Plant Survey- Transects Transects 1, 2 and 3 appear to have been oriented across the river. However, during a site visit conducted on October 22, 2014, representatives from FL and the Division agreed that transects would be oriented parallel to the river so as to capture minimum and maximum elevations of suitable habitat, both occupied and not occupied. It appears that transects were not oriented as discussed. We also agreed that a supplemental transects would be added at Second Island and Fourth Islands (oriented across the current), though it appears that these additional transects were not collected. The Division requests that FERC direct FL to orient the transects as previously agreed and that associated hydrological assessments be revised.	FL collected transect data both parallel and perpendent based on a transect location, the lowest and h GPS. The transect orientations differ from those selected in 2015 were intended to include as much MADFW approved botanist Steve Johnson while searches were made in 2015 at these three location species occurred. The entire population (i.e., pol season. FL has made all RTE plant transect data Excel spreadsheet is being filed separate from the searches three three location for the searches being filed separate from the searches were made in 2015 at the searches were made all RTE plant transect data Excel spreadsheet is being filed separate from the searches were made in the searches being filed separate from the searches were made in the searches were made in the searches were made at the searches were were were were were were were we
MADFW-7	4.3 RTE Plant Survey- Transects Mid-May through October represent the key months of the growing season where state- listed species grow, flower and set fruit. Most populations are mostly or entirely inundated, and are adapted to tolerate the spring freshets and decreasing water levels between June and October and are therefore less affected by flows typically observed during April and early May. Therefore, we request that all figures showing transect elevational surveys and species distributions (e.g., Figure 4.3-9 and similar) be revised to exclude April and 1-15 May	The specific timing for the data analysis was not and the relationship to occupied and unoccupied inundated during the April time frame. The mon flows as well as covering the majority of the gro coverage of the growing season to determine pot
MADFW-8	4.3 RTE Plant Survey- Transects The Division requests that FERC direct FL to revise the report, and submit it for public review and comment, to provide information on within-day frequencies of WSEL fluctuations and how long each particular WSEL is inundated (e.g., duration of flooding).	This information will be provided in the addendu
MADFW-9	4.3 RTE Plant Survey- Transects Per the MRSP (p. 12), at established transects, data was to have been collected related to substrate, including particle size, soil texture, and percent cover across the transect. Although the report provides a general description of habitat, it does not include substrate data or an explanation for why the data was not provided. Therefore, we request that FERC direct FL to revise the report, and submit it for public review and comment, to include this data consistent with the MRSP.	A qualitative description of substrate was provid classifications such as silt, sand, cobble, gravel, a the species at each transect location. Based on th to be sufficient to describe habitats where plants determining particle size at the transect location
MADFW-10	<u>4.3 RTE Plant Survey- Transects</u> MADFW requested several revisions to the report regarding Transects 1-4, T-3, 5A, 5B, 6A-6C, 11A-11D.	This information will be provided in the addendu

endicular to flow at locations 1, 2, and 3. While the perpendicular data is nighest locations of mapped RTE species were identified with the RTK recommended by the MADFW, however the locations that were ch area occupied by target RTE plant species in consultation with e in the field during the transect survey. In addition to the transect data, ons to identify the maximum and minimum elevation at which that lygon data) for each species was mapped during the 2014 growing a available to the MADFW in <u>Study 3.5.1 Attachment C</u> (Excel). The is document.

described in the RSP. April was selected to show a high flow event habitats at each of the transect locations. In several cases habitat is fully the selected for the analysis were based on the potential of spring high owing season. The months selected for the analysis provide sufficient tential Project impacts on targeted RTE plant species.

ım.

led for each of the Survey transects, the particle size was not collected as and bedrock are descriptive of the habitats occupied or unoccupied by ne habitat observed during the survey, qualitative observations appeared were growing. The RSP does not describe a specific method for and therefore a qualitative approach was taken to describe the habitat.

um.

Study No. 3.6.1 Recreation Use/User Contact Survey

	Commenter	Comment	Responses
Commenter CRWC-1		Accuracy of User Estimates One of the study objectives was to determine the amount of recreation use at the Turners Falls and Northfield Mountain recreation sites. In Study Report 3.6.1, FirstLight has estimated total recreation use to be 152,769 recreation days in 2014. Comparatively, TransCanada estimated recreation use in their Study 30, calculating annual use for the Wilder study area to be 234,400; Bellows Falls 312,531; and Vernon 72,388. Section 4.7.1 states that the user surveys indicate that the large majority of visitors to the Project live within 25 miles of the Project. TransCanada's study 30 also concluded that, "the overwhelming majority of visitors to the recreation facilities originate their trips from the towns immediately adjacent to the Projects." Parts of Hampshire County, including Northampton, are within 25 miles of the Project. Though Hampshire County was not considered to be part of the projection of project recreation days, the area around the Turners Falls and Northfield Mountain projects has a larger population than surrounding most if not all of the TransCanada sites. The estimated yearly use in Study 3.6.1 either indicates that the estimates are too low, or that the facilities are not drawing the kinds of recreational users that are possible for a region of this population.	The results of the FL and TransCanada (TC) recre CRWC. The studies employed different data colle plans, the results of which could produce varying recreation sites, TC's study relied on traffic count calibrating the recorder to observed use can over- seems that they have assumed 2 traffic counter co with traffic counter data determined that average an example, as described in more detail below, at (10.9 times per visit). That means that every 10.9 the site. In addition, TC's study used average gro estimate site use. The average peak season group customized by site). In comparison, FL's average average persons per vehicle ranged from 1.3-1.9, potential overestimation of vehicle traffic based o of site use than if a lower group size or vehicle co suggests that overall TC's use estimates may be h by the each of the three TC projects and the numb are variable and might also produce higher Project than a 25-mile stretch of the Connecticut River, a occupied by the TC projects is over 100 miles and it would be expected that the total recreation use of two FL projects.
	CRWC-2	Accuracy of User Estimates In some areas, such as Cabot Woods, where a stairway was removed to reduce recreational use of that area, or Poplar Street access site, where the site has been inadequate and allowed to deteriorate for years, or Cabot Camp, which has a building that was formerly used by the public but now is closed to the public, degradation/use restriction no doubt reduces demand.	FL acknowledges that at one time there was a statistice it was removed sometime before 1987. FL conditions and the fact that there have been previous and for other uses, and use at this site was evaluate. Contrary to CRWC's statement, the "camp" build generally only been used by the Licensee for busin use and provide public access to the Turners Falls has been public use of the "camp" building and b public use of the "camp" building has not reduced. As set forth in the report for Study No. 3.6.3 White evaluation rated the Poplar Street access as mode Poplar Street Access area into the project boundat this site.
	CRWC-3	Accuracy of User Estimates Comparatively, FirstLight's estimated annual use for the Governor Hunt Boat Launch/Picnic Area was 1,812, an order of magnitude lower than TransCanada's estimate (see Table 4.1.3-1 of Study 3.6.1). Table 4.1.3-2 estimates that recreational use at this site was 53% motor boating, 15% non-motor boating, 12% fishing, and 19% "unidentified." Picnicking and fishway viewing got 0%. Swimming was not a category that FirstLight evaluated at /any site, but may be part of the "unidentified" numbers. CRWC views the differences in the information collected about this site to be large, and requests that FERC attempt to evaluate whether each company in fact followed their respective RSP or if the methodology in the RSPs were flawed (particularly for FirstLight's sties that were assessed only by spot counts).	FL's estimates of recreation use at the Governor I noted above in response to CRWC-1, the methods may have produced misleadingly high estimates. Governor Hunt site; the portion that lies within th users who had boat trailers or boat racks on their around the dam. FL did not count or survey users viewing area. This was intentional, and was consi recreation use at the Governor Hunt site, cannot b

eation use studies are not comparable in the manner suggested by ection and analysis methods, consistent with their respective study estimates. For example, in estimating recreation users at the TC ters only, with no calibrations. Using traffic counter data without inflate use estimates dramatically. For example, from TC's study text it ounts per vehicle. By contrast, FL's calibration count data, combined traffic counter counts per vehicle per visit was much higher than 2. As Pauchaug Boat Launch the summer average was 5.4 times per crossing counts recorded on the counter accounted for a single vehicle visiting oup size, rather than the number of persons per vehicle (PPV), to size was 3.2 persons for the Vernon Project (group size was not PPV numbers were much lower. For example, at Governor Hunt, FL's depending on the season. Combined, TC's higher group size and on the uncalibrated counter data, would produce a much higher estimate ounts, based on calibrated traffic counter data, had been used, and high. Further, FL would note that the length of the river reach occupied per of recreation sites and facilities evaluated as part of the TC study t use numbers than at the FL projects. The FL projects occupy less nd counts were made at 22 recreation sites. The total river reach d recreation use was evaluated at nearly 50 sites. For this reason alone, estimated at the three TC projects would be much higher than at the

ircase at the Cabot Woods site but there has been no staircase at the site discourages swimming at this site due to dangerous river flow ous drownings in this area. The site remains a popular site for anglers ted under the existing conditions, consistent with the RSP.

ling at Cabot Camp has never been available for public use and has iness purposes. However, the road and parking area are open to public s impoundment for a variety of recreation uses. Because there never ecause the site provides access to Project waters, the restriction on d demand or use of the site.

tewater Boating Evaluation, 91% of participants in the boating rate/difficult access. In the FLA, FL has proposed to incorporate the ry as a Project recreation site, and make improvements to the access at

Hunt site cannot be compared with TC's estimates for this same site. As s for estimating use at Governor Hunt are different, and TC's methods In addition, FL's study evaluated only a limited portion of the ne FL Project Boundary. More specifically, FL surveyed and counted vehicles, were launching or retrieving watercraft, or were portaging utilizing the picnic area, the picnic area parking lot or the fishway istent with the FL RSP. Therefore, comparison of FL's estimates of be compared with TC's estimates for this same site.

Commenter	Comment						Responses
CRWC-4	Accuracy of User Es	stimates					
	CRWC requested an summed the traffic c evaluate counts at Ca sure how they subtra counter numbers bec the site.	CRWC has utilized FL's raw traffic counter data t recreation sites and then has compared their estima- sources that FL used to develop its use estimates, a estimates for each site. FL's estimates are based of counts and calibration counts, as well as the traffic traffic counter data without the calibration data is use estimates. In general, uncalibrated traffic cour- <i>e.g.</i> , Watson, Alan E.; Cole, David N.; Turner, Da					
	Site	Estimated Annual Use (2014) in Table 4.1.3-2	FirstLight Traffic Counter totals 5/23- 11/14/2014	CRWC estimated vehicle counts	CRWC Comments		GTR-56, October 2000). For example, at the Pauchaug Boat Launch, CR'
	Pauchaug Boat Launch	9,630	70,253	11,708 [a]	Our conservatively estimated # of vehicles exceeds FL's annual estimate of the site recreation use.		FL's estimates of persons per vehicle varied by seasons were higher than 1 person per vehicle. FI indicated that vehicles were counted an average times per crossing (13.7 times per visit) in the fall
	Boat Tour and Riverview Picnic Area	13,651	32,239 [c]is	8,059 [b]	Table 4.1.3-1 estimates winter use at this site is 17%, and traffic counter was removed 1 month into fall which gets 21% of use, so FirstLight must have estimated additional numbers.		this site was 9,007 for summer and fall (number of Finally, in developing the total use estimate for e estimates, to produce a more rigorous estimate. A for the summer and fall combined, which produc using the calibrated traffic counter data alone. In with some simplifying assumptions produce diffe
	State Boat Launch (at Barton Cove)	15,126	97,482	16,247 [a]	Our conservatively estimated # of vehicles exceeds FL's annual estimate of the site recreation use.		Regarding CRWC's question about why there are that two traffic counters were used at the Cabot W is also utilized by the USGS Conte Lab staff. The was intended to record all use traveling along Mi Conte Fish Lab and was intended to provide a con traffic counters still only accounted for traffic inte estimates for the Cabot Woods site utilized spot of recreation user surveys, to estimate recreation used calculation error was found and fixed that resulte recreation days out of an annual total of more tha Study No. 3.6.1. FL has provided the revised tab <u>Attachment A</u> , Tables 4.1.2-1, 4.1.3-2, 4.1.3-3 ar
							Regarding CRWC's concerns about the Poplar Si the traffic counter location at this site was not op site parking lot and entrance. Given the layout of that some vehicles may have eluded the traffic co given the numbers of vehicles recorded that it pro above, FL's site use estimates did not rely solely calibrate the traffic counter data, and also include Poplar Street are sound.

to make their own estimates of recreation use at several of the FL hates to FL's. In doing so, CRWC has taken only one of several data and has ignored the other data that FL also used to make sound use on a more thorough analysis of the data that includes use of both spot ic counter data. As described above in response to CRWC-1, use of known to produce unreliable vehicle counts and, in turn, inaccurate nter data is known to produce misleading recreation use counts. *See* avid L.; Reynolds, Penny S., Wilderness Recreation Use Estimation: A nent of Agriculture, Forest Service: General Technical Report RMRS-

VC assumed 1 person per vehicle and 6 traffic counter counts per visit. eason (Spring-1.3, Summer 1.5, Fall 1.5, and Winter-1.2) and in all L's traffic counter data in conjunction with the calibration counts of 5.4 times per crossing in the summer (10.9 times per visit) and 6.8 l. As a result of these differences, FL's total traffic count estimate for not published in 3.6.1 report), as compared to CRWC's count of 11,708. ach site, FL averaged the spot count totals with the traffic counter tt Pauchaug Boat Launch, FL's spot counts were slightly lower at 8,535 ed a seasonal average use estimate that was lower than that produced short, CRWC's use of uncalibrated traffic counter data in combination erent, but less rigorous estimates of the use at these three sites.

e two traffic counter datasets for the Cabot Woods site, FL would note Voods site because the access road to the parking lots (Migratory Way) e first was located at the gated entrance to Migratory Way. This counter gratory Way; The second was located just prior to the access road for unt of Conte Fish Lab and Plant staff. However, in the end, because the o one of the two parking lots that serve the Cabot Woods area, use count data, with additional information from the calibrations and e. In reviewing the use calculation for Cabot Woods, however, a d in use estimates at this site decreasing by a very small amount (177 n 18,000). This resulted in minor corrections to tables in the report for les in both redline and clean versions in an attachment. See <u>Study 3.6.1</u> d 4.7.2-4.

treet Access site traffic counter location and data, FL acknowledges that timal, but no better site could be located due to the configuration of the the site entrance and parking area, FL acknowledges that it is possible ounter. However, we reviewed the traffic counter data, and felt that ovided a good estimate of vehicle use at that site. Moreover, as noted on the traffic counter data, but also utilized calibration count data to ad the spot count data. As a result, FL believes that the use estimates for

CRWC-5	Study omits one key use of Project Area: Swimming CRWC suggests one of the major categories is "swimming." Swimming was not listed as a recreational use category in the calibration count sheets, and therefore swimming could not be noted down when observed by personnel conducting the spot count. According to Table 4.2-3, recreation survey respondents did indicate that they were swimming at the sites – 19 indicated that this was the primary activity, and a total of 93 indicated that they swam during their visit (surprisingly, 22 indicated doing so in the winter).	Consistent with the RSP, the recreation use count for not specifically list swimming as an activity. This w at the Project, and there are no formal swimming are sites. However, the spot and calibration count surve swimmers, sunbathers, waders, and those informally category. So swimmers were accounted for in the re	rms utilized by I as because for sa eas or swimming y forms used by y using Project w creation use estin	FL for both sp fety reasons, facilities pro FL did allow aters and reco mates made fo	ot counts and FL generally of vided at any of those conduction or that use in or each site and	calibration counts did liscourages swimmin f the Project recreatio ng the counts to cour the "other uses" l in total.
		Moreover, the User Survey which was designed to h participating in that day, included swimming as a sp provide a sound assessment of the portion of recreat site, in each season, and in total. Of the 934 recreati participating in that day, 19 included swimming as of 34 in summer, and 15 in Fall (see Table 4.2-3 of the that swimming occurred at 9 recreation sites at the F of respondents that indicated that swimming was an spring, summer and fall seasons. Table. Recreation Users Survey Results: Percent of	ave the recreation ecified recreation ion users survey onists that respondent of their active 3.6.1 Study Rep The projects. The activity they had respondents that	onists themsel n use. The res ed that did uti nded to the qu ities on that d oort). Based of table below p l participated indicated that	ves identify we sults of the Use lize the Project estion about w ay, 22 indicate n these response rovides a breal in during their t they had part	hich activities they we er Survey allowed FL t for swimming at each that activities they we d they swam in sprin ses, the survey found acdown of the percenta current visit, and in icipated in swimming
		as a recreational activity, during their current visit, b	by site and by sea	ison		
		Recreation Site	This Trip (n=19)	Spring (n=22)	Summer (n=34)	Fall (n=15)
		Governor Hunt Boat Launch/Picnic Area	0%	11%	11%	0%
		Pauchaug Boat Launch	5%	2%	5%	0%
		Bennett Meadow Wildlife Management Area	0%	2%	2%	2%
		Munn's Ferry Boat Camping Recreation Area	0%	0%	17%	0%
		Boat Tour and Riverview Picnic Area	4%	0%	4%	2%
		Cabot Camp Access Area	9%	9%	6%	6%
		Barton Cove Nature Area	1%	0%	2%	1%
		State Boat Launch	1%	1%	2%	2%
		Unity Park	0%	0%	1%	0%
		Cabot Woods Fishing Access	3%	3%	7%	5%
		Total, Project-Wide	2%	2%	4%	2%
		As shown in the table, for the current trip, swimmin Pauchaug Boat Launch (5%). Project-wide, 2 percer Project. In the spring, swimming was reported most Cabot Camp Access Area (9%). Project-wide, 2% o expected, summer swimming use as higher, with 17 Area and 11% swimming at Governor Hunt Boat La reported swimming during the summer. Swimming and Cabot Woods Fishing Access (5%) experiencin reported by 2% of those surveyed project-wide. O swimming ranks as the 13 th most frequent response No respondents to the user surveys collected by FL winter. The winter swimming use reported in Table spreadsheet calculation error, which has been correct final in an attachment. See <u>Study 3.6.1 Attachment J</u>	g was most ofter at of recreationis frequently at Go f those survey re % reporting swin nunch/Picnic Are responses declin g the highest per f the recreation a in the summer an reported swimm 4.2-3, and noted ted by FL. FL h Table 4.2-3	a reported at C ts reported swi ported swimn nming at Mur a. Project-wid ed in the fall, centages of re activities inclu- nd the 17 th mo- ing as an activ- by CRWC w as provided th	Cabot Camp Advinming on the Boat Launch/P ning in the sprin's Ferry Boa de, 4% of recre with Cabot Ca ported swimm ided on the Re- post frequent for vity they partic as determined his corrected ta	ccess Area (9%) and eir current trip to the icnic Area (11%) and ing at the site. As t Camping Recreation ationists surveyed mp Access Area (6% ing. Fall swimming v creation User Survey. "this trip." ipated in during the to be the result of a able in both redline an

vere to L ach vere ng, age the

on 6) was

Commenter	Comment	Responses
CRWC-6	Potential error At the Station No. 1 fishing access site, cross country skiing is listed as 14% of the activities at this site in Table. This appears to be an error. The calibration count spreadsheet shows no cross country skiing at this location. This is not a practical activity at the site. It also estimates biking at this site to be 21% of the use. We reviewed the spot count record for this site, and on April 27, 2014, the spot counts indicated that 5 people biked to the site. We do not agree that the means of transportation to the site indicates the recreational use AT the site.	Recreation survey data collected for the Station N counts) not just at Station No.1 but also in the Br open space, roads and pathways (including an old of non-water-based activities including walking, activities at this site were recorded, as observed, numbers of bikers and X-C skiers were directly o annually), even small numbers of recreationists p percentage of recreation use for that activity. He produced the results noted by CRWC; that biking of use.
CRWC-7	Assessing User Demand One of the study objectives was to determine the amount of recreation use and <i>demand</i> at the Turners Falls and Northfield Mountain recreation sites. Unfortunately, FirstLight only interviewed people who came to the facilities, which indicates that something about that facility appealed to them. They refused to interview people who did not show up because they found the facility faulty and went elsewhere. In contrast, the surveys done on the upper dams by TransCanada included contact with people who did not use the TransCanada facilities.	During Study Plan development CRWC requeste specialized user groups. FL disagreed with this ap survey was not needed for the FL Projects (FERC following up on a suggestion made by FERC in the to comment CRWC-8.

No. 1 site included observed recreation use (spot counts and calibration ranch Canal area near Station No.1. The Branch Canal area includes d railroad bed) that are used by recreationists that participate in a variety hiking, jogging, as well as biking and X-C skiing. Recreation during both spot counts and calibration counts. Although only small observed, because overall use of this site was quite low (1,264 participating in a particular activity at the site translated into a notable ence, even a small number of observed bicyclists and X-C skiers g use at this site represented 21% of use and X-C skiing represents 14%

d that FL conduct a non-user survey of Project recreation use, including pproach and ultimately FERC determined that a non-user recreation C Study Plan Determination Letter dated 9/13/13). Subsequently, he SPDL, CRWC conducted its own recreation use study. See response

Commenter	Comment	Responses
CRWC-8	Survey of Connecticut River Watershed Council and Appalachian Mountain Club Members	
CRWC-8	Survey of Connectcut River Watershed Council and Appalachian Mountain Club Members In an effort to gather additional information who may not use the facilities and/or who use them infrequently, CRWC and AMC developed an online survey using the TransCanada user survey as a starting point. In total we got 321 responses from CRWC and AMC members. Since they are members of the organizations, they are either biased toward an affection for the river or someone who is engaged with the outdoors already. Of our survey respondents, 72% regularly visit this region, 34% said they prefer other areas with better opportunities and 52.9% cited other reasons. Of the 55 people who responded to the question about the kinds of recreational facilities and activities that would make them more likely to recreate on the Connecticut River included, the most popular answer was better and easier access sites and launch facilities for cances and kayaks, and trails for hiking, biking, and birdwatching. Our survey asked respondents if they had ever portaged around the Wilder, Bellows Falls, Vernon, and/or Turrers Falls Dams. Of the 158 people who responded to this guestion, we got 32 descriptions of the experience. Several of those responses indicated that the Poplar Street access was too steep and was not casily accessible. One respondent indicated a desire for access upstream of the Sunderland Bridge, but an inability to use the steep access at Poplar Street. Other responses pointed at portage length and there was a general comment about not being able to find the put-in and take-out points for any portages. Survey respondents indicated they found the following amenities important if they were made available: parking areas, road access to recreation areas, toilets, trash receptacles, tent campsites, boat access for cances and kayaks, picini sites, swimming/beach access, secnic views, wildlife viewing and nature trails, hiking trails, and biking trails. Of the 227 people who answered the question, 73.6% said fluctuating river levels on the	FL has reviewed the survey and the results of the survey provides results that are quite consistent will specifically highlighted by CRWC are worthy of was of its own members, as well as members of t and therefore (as CRWC acknowledges in its letter respondents, 72% reported that they regularly vision Mountain. This means, that the large majority of therefore likely would have also been captured in 27.7% that do not regularly visit the FL or TC probetter opportunities. That means of the 321 surve TC projects for recreation because they prefer oftew two-thirds of the respondents who said they do not reasons that have nothing to do with the recreation evaluation of recreation user demand (which incollicense.) With respect to the responses that the Poplar Street near the Poplar Street Access area into the to the access at this site. Otherwise the CRWC survey results seem general found that most recreationists using the Connection and come for the day. CRWC's survey also foun based (boating, etc.) and non-water based (hiking indicated satisfaction with the quality of the exist that the Connecticut River facilities that they use quality as average or better than average. Other facilities, while for non-water based activities, the wildlife viewing/nature trails, and scenic views/v
		fluctuations do NOT adversely impact their recre been split out by project. Thus, of the 23.8% of r their recreation experience, the CRWC-AMC doe respondents felt that water level fluctuations at th
CRWC-9	<u>Additional CKWC Observations</u> Table 4.3-10 of that report shows that at Transect 4, which is downstream of the confluence of the Deerfield River near the railroad bridge,	During Study Plan development CRWC requester
	the daily change in elevation for the months of June, July, August, and September are 4.0 feet or greater 29%, 36%, 42%, and 38% of the time, respectively. This is the area of most dramatic river fluctuation, and we believe that it impacts recreation use of the river downstream of Cabot. The Recreation Use/User Contact Survey did not survey river users downstream of the project area, and we continue to believe this is an oversight.	Station. FL disagreed with this approach and ultin of Cabot Station was not needed (FERC SPDL da for the reach of river downstream of Cabot Statio on river flows and project operations on both the recreation access points downstream of the Popla are affected by other hydropower projects on the of regional recreationists 73.6% reported that fluc recreation experience. As noted above, CRWC's to know what percentage of the CRWC-AMC res any, felt that fluctuating water levels detracted from

survey conducted by CRWC. Generally, FL believes the CRWC-AMC with the results of FL's recreation use study. A couple of findings comment. First, FL would note that the survey conducted by CRWC he AMC. As such, this was not a random survey of regional residents, er) the results are biased. Second, CRWC reports that of the 321 survey it the sections of the Connecticut River under relicensing or Northfield the respondents ARE regular visitors to the FL (or TC) projects, and the FL and/or TC recreation use counts and user surveys. Of the oject areas, only 34% indicated that they preferred other areas with y respondents, less than 10% indicated that they did not use the FL or ner areas with better opportunities. This also means that approximately ot recreate at the FL or TC sites didn't recreate at the Projects for onal opportunities at the FL or TC projects. These results support FL's proprieted population trends in the Project area) over the term of a new

et access was too steep, we note that in the FLA, FL has proposed to project boundary as a Project recreation site, and make improvements

ally consistent with those of FL's study. For example, CRWC's survey cut River in the vicinity of the FL and TC projects live in the region d that recreationists using the Project area participate in both water g, biking, birding, etc.) activities. Respondents to CRWC's survey also ing recreation sites and facilities with 82% of respondents reporting are adequately maintained and the majority of respondents rating the findings that are generally consistent with FL's findings are that among vities, access for canoes and kayaks and boat ramps are important e most important facilities/amenities identified were hiking trails, iewpoints.

the large majority of respondents (73.6%) said that water level ational use of the projects. As CRWC points out, this result has not espondents who said that river fluctuations have negatively affected as not provide any data to determine what percentage of these e FL project detracted from the recreation experience.

d that FL conduct a survey of recreation users downstream of Cabot mately FERC determined that a user survey for the reach downstream ated 9/13/13). FL acknowledges that the hydraulic modeling work done on shows that water surface elevations in that reach fluctuate depending Connecticut and Deerfield rivers. But as noted by FERC in its SPDL, ar Street access are not integrally connected to the Project because they Deerfield river. However, it is worth noting that CRWC's own survey ctuating water levels on the Connecticut River do NOT affect their survey did not split the responses by Project. Therefore it is impossible spondents used the reach below Cabot Station and what percentage, if om their recreation experience.

Study No. 3.6.5 Land Use Inventory

Commenter	Comment	Responses
CRWC-1	The report does not identify ownership and other controls such as FirstLight's flowage rights within the Project boundaries. FirstLight does not own all of the lands within the project boundaries. FirstLight ownership of lands within 200 feet of the Project boundaries is identified in Figure 4.4-1, but nothing indicates ownership within the boundaries. CRWC requests that FirstLight provide information on land it has ownership or any other control over, and the land use associated with those lands, in an addendum to Study 3.6.5.	FL has updated the maps that comprise Figure 4.4 project boundary. See <u>Study 3.6.5 Attachment A</u> figures also show other lands within the Project b associated with all lands within the Project bound study report is not necessary.
CRWC-2	CRWC received this map [Town of Greenfield] shortly before filing this letter with FERC, and have not been able to determine if Figure 4.2-1 Map 8 is lacking any information about conservation land. We recommend FirstLight look at the attached map, and confirm land use ownership, if it hasn't already.	FL reviewed the tax map provided to CRWC by t location of any additional conservation lands alor CRWC.

4-1 in the 3.6.5 study report to show FL land ownership within the A, Figure 4.4-1. The lands owned by FL shown are fee-ownership. The boundary (e.g., flowage rights, easements, leases, etc.). The land uses dary are provided in the 3.6.5 study report. An addendum to the 3.6.5

the Town of Greenfield and was unable to verify the accuracy of the ng this reach of the Project as depicted on the tax map provided to

STUDY NO. 3.3.6 ATTACHMENTS

Attachment A to Study No. 3.3.6. Table 4.2.3-1A. Minimum, maximum and mean flow in the Turners Falls canal and bypass reach throughout the 2015 shad spawning survey period

	Time (EDT)		Canal Flow ² (cfs)		Bypass Flow ² (cfs)				
Date ¹	Start	End	Min	Max	Mean	Min	Max	Mean	Notes
5/19/2015	19:58	1:00	3,532	13,322	9,970	4,288	4,503	4,397	no spawning observed
5/20/2015	19:51	1:00	2,507	6,878	3,251	4,281	4,496	4,398	no spawning observed
5/21/2015	20:05	1:00	2,517	8,833	6,980	2,477	4,482	3,492	no spawning observed
5/26/2015	20:30	1:00	2,437	4,908	3,420	2,876	4,229	3,556	no spawning observed
5/27/2015	20:00	1:00	1,712	6,540	4,398	2,365	7,317	5,181	no spawning observed
5/28/2015	20:20	1:00	3,605	8,109	6,425	2,357	2,509	2,437	no spawning observed
6/4/2015	20:30	1:00	6,895	16,353	14,320	2,654	4,824	4,304	no spawning observed
6/8/2015	20:17	1:00	5,735	9,792	8,795	2,426	3,863	2,850	no spawning observed
6/9/2015	20:30	1:00	6,405	14,932	10,453	2,418	2,608	2,527	no spawning observed
6/10/2015	20:30	1:00	12,341	17,163	15,610	4,590	4,861	4,727	no spawning observed
6/16/2015	21:00	0:30	11,998	16,929	15,236	3,186	3,313	3,246	no spawning observed
6/17/2015	20:30	1:00	6,361	13,934	11,301	3,168	3,347	3,235	spawning observed in lower portion of canal, near right bank @ 00:24 ³
6/18/2015	20:30	1:00	10,652	14,115	12,661	985	1,068	1,021	spawning observed below rock dam @ 22:17
6/22/2015	21:00	0:30	16,250	16,511	16,374	8,467	10,281	9,332	no spawning observed

¹Indicates date survey commenced ²Reported flow metrics are for survey period only. ³Observation actually occurred early on 6/18

Date	Instantaneous River Flow Montague USGS Gage (cfs)		Time (EDT)		Site	Cabot Generations (MW)		Number of Units		Splash Counts				Area	
	Before	Before After		After	ID	Before	After	Before	After	Bet	fore	A	fter	Before (acres)	After (% change)
										Obs 1	Obs 2	Obs 1	Obs 2		
5/26/2015	8,310	8,150	20:56	21:34	8	10.5	21.1	1	2	82	71	73	65	4.36	-0.20%
5/26/2015	8,830	9,000	22:10	22:51	9	20.8	10.2	2	1	208	223	203	207	4.68	0.19%
5/27/2015	11,000	9,240	22:50	23:40	10	0.08	10.1	0	1	35	40	22	29	3.34	-1.99%
5/28/2015	8,690	8,190	0:15	0:50	11	10.3	0.08	1	0	53	59	46	46	3.41	0%
5/28/2015	7,710	9,240	20:46	22:08	12	20.5	31.4	2	3	37	26	9	19	5.49	0.12%
5/28/2015	9,760	9,150	23:13	23:57	13	31.5	21.3	3	2	25	35	8	11	4.08	0.09%
6/9/2015*	12,500	12,700	20:00	20:43	14	41.1	41.3	4	4	36	37	24	20	0.68	0.25%
6/9-10/2015	16,000	16,200	23:45	0:30	15	61.7	40.9	6	4	11	8	4	2	9.15	0.14%
6/10/2015	21,300	20,900	22:29	23:22	16	60.7	40.5	6	4	10	12	11	12	0.7	-0.08%
6/10-11/2015	19,400	18,400	23:51	0:27	17	41.3	61	4	6	30	39	33	25	4.85	0%
6/16/2015	20,400	20,400	22:38	23:20	18	61	40.6	6	4	72	72	37	34	5.05	0%
6/17/2015	17,600	18,700	0:24	0:55	19	45	60.6	4	6	4	5	4	4	0.42	0%
6/17/2015	15,800	15,600	22:20	23:07	20	41.2	20.6	4	2	12	9	18	17	1.42	-0.04%
6/17-18/2015	14,100	13,500	23:33	0:15	21	20.7	40.9	2	4	40	43	22	21	3.1	-0.08%
6/22/2015*	26,400	n/a	21:59	n/a	22	58.5	n/a	6	n/a	62	53	n/a	n/a	6.75	n/a

Attachment B to Study No. 3.3.6. Table 4.3-1A. Summary of data used to Assess Effects of Operations on Shad Spawning (Obs = observer).

* Ambient conditions did not permit operators to change Cabot generation.

Attachment E of Study No. 3.3.6 Survey location, date and time of spawning observations during the 2015 shad spawning study.

Survey Location	Date	Time of Spawning Observation
Canal	6/18/2015	0:24
Bypass Reach	6/18/2016	22:17
Impoundment	5/19/2016	20:33
Impoundment	5/20/2016	20:21
Impoundment	5/26/2016	20:57
Impoundment	5/27/2016	22:25
Impoundment	6/16/2016	22:00
Impoundment	6/17/2016	22:49
Impoundment	6/18/2016	22:15
Downstream	5/14/2015	21:15
Downstream	5/14/2015	20:18
Downstream	5/19/2015	17:05
Downstream	5/19/2015	23:03
Downstream	5/21/2015	21:51
Downstream	5/21/2015	22:37
Downstream	5/21/2015	23:40
Downstream	5/26/2015	20:56
Downstream	5/26/2015	21:34
Downstream	5/26/2015	22:10
Downstream	5/26/2015	22:51
Downstream	5/27/2015	22:50
Downstream	5/27/2015	23:40
Downstream	5/28/2015	0:15
Downstream	5/28/2015	0:50
Downstream	5/28/2015	20:46
Downstream	5/28/2015	22:08
Downstream	5/28/2015	23:13
Downstream	5/28/2015	23:57
Downstream	6/9/2015	20:00
Downstream	6/9/2015	20:43
Downstream	6/9/2015	23:45
Downstream	6/10/2015	0:30
Downstream	6/10/2015	22:29
Downstream	6/10/2015	23:22
Downstream	6/10/2015	23:51
Downstream	6/11/2015	0:27
Downstream	6/16/2015	22:38
Downstream	6/16/2015	23:20
Downstream	6/17/2015	0:24

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

Survey Location	Date	Time of Spawning Observation
Downstream	6/17/2015	0:55
Downstream	6/17/2015	22:20
Downstream	6/17/2015	23:07
Downstream	6/17/2015	23:33
Downstream	6/18/2015	0:15
Downstream	6/22/2015	21:59

Note: Brackets at the tops of each subplot indicate the photoperiod (hours) quantile, such that the top left chart includes data collected when photoperiod was greater than or equal to 14.6 hours but less than 14.94 hours.

Scenario	Before Mean	Before Variance	After Mean	After Variance	n (pairs)	n (obs)	t	df	p
Increase - All	3.39	0.73	2.99	0.72	14	28	3.9884	13	0.002
Decrease - All	3.43	1.32	3.04	1.73	14	28	2.3259	13	0.03
Increase 1	3.79	0.19	3.34	0.62	6	12	2.259	5	0.07
Decrease 1	4.26	0.83	3.79	1.19	6	12	2.1252	5	0.08
Increase 2	3.08	0.97	2.72	0.70	8	16	3.472	7	0.01
Decrease 2	2.81	0.84	2.48	1.01	8	16	1.314	7	0.23

Attachment G of Study No. 3.3.6. Results for paired t-test by operational scenario

STUDY 3.3.11 ATTACHMENTS

Filed Date: 05/31/2016

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889) Study Reports Comments and Responses

Attachment A to Study 3.3.11. Detailed Sampling Data CPUE based on sampling duration Impoundment June-July 2015

85.5 Electrofishing	Ν	umber of Ind	lividuals		CPUE/min (1587 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY	
Smallmouth Bass	25	16	9		0.94518	0.6	0.34	0	
Largemouth Bass	0				0	0	0	0	
White Sucker	2	2			0.075614	0.08	0	0	
Yellow Perch	20	18	2		0.756144	0.68	0.076	0	
Spottail Shiner	52	40	12		1.965974	1.51	0.454	0	
Fallfish	15	1	14		0.567108	0.04	0.529	0	
Mimic Shiner	0				0	0	0	0	
Golden Shiner	2		2		0.075614	0	0.076	0	
Common Shiner	0				0	0	0	0	
American Eel	0				0	0	0	0	
Walleye	2	2			0.075614	0.08	0	0	
Black Crappie	1				0.037807	0	0	0	
Rock Bass	11	6	5		0.415879	0.23	0.189	0	
Bluegill Sunfish	4	4			0.151229	0.15	0	0	
Pumpkinseed Sunfish	0				0	0	0	0	
Northern Pike	0				0	0	0	0	
Chain Pickerel	0				0	0	0	0	
Channel Catfish	1	1			0.037807	0.04	0	0	
Brown Bullhead	0				0	0	0	0	
Tessellated Darter	0				0	0	0	0	
Sea Lamprey	1		1		0.037807	0	0.038	0	
American Shad	0				0	0	0	0	
Common Carp	0				0	0	0	0	
	136	90	45	0	5.141777	3.41	1.702	0	

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 7	1889)
Study Reports Comments and Responses	

84.5 Electrofishing	Number of Individuals				CPUE/min (1519 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	15	8	7		0.5925	0.316	0.2765	0
Largemouth Bass	0				0	0	0	0
White Sucker	4	4			0.158	0.158	0	0
Yellow Perch	5	2	3		0.1975	0.079	0.1185	0
Spottail Shiner	26	26			1.02699	1.027	0	0
Fallfish	14	7	7		0.553	0.2765	0.2765	0
Mimic Shiner	1		1		0.0395	0	0.0395	0
Golden Shiner	0				0	0	0	0
Common Shiner	0				0	0	0	0
American Eel	2		2		0.079	0	0.079	0
Walleye	0				0	0	0	0
Black Crappie	0				0	0	0	0
Rock Bass	3	3			0.1185	0.1185	0	0
Bluegill Sunfish	0				0	0	0	0
Pumpkinseed Sunfish	0				0	0	0	0
Northern Pike	0				0	0	0	0
Chain Pickerel	0				0	0	0	0
Channel Catfish	0				0	0	0	0
Brown Bullhead	0				0	0	0	0
Tessellated Darter	0				0	0	0	0
Sea Lamprey	1		1		0.0395	0	0.0395	0
American Shad	1	1			0.0395	0.0395	0	0
Common Carp	0				0	0	0	0
	72	51	21	0	2.84399	2.0145	0.8295	0

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

84.3 Electrofishing	Number of Individuals				CPUE/min. (1514 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	15	10	5		0.59445	0.396	0.198	0
Largemouth Bass					0	0	0	0
White Sucker					0	0	0	0
Yellow Perch	3	2	1		0.11889	0.079	0.04	0
Spottail Shiner	4	2		2	0.15852	0.079	0	0.001
Fallfish	4	1	3		0.15852	0.04	0.119	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel	1		1		0.03963	0	0.04	0
Walleye	2		2		0.07926	0	0.079	0
Black Crappie					0	0	0	0
Rock Bass	2	2			0.07926	0.079	0	0
Bluegill Sunfish	2	2			0.07926	0.079	0	0
Pumpkinseed Sunfish					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	33	19	12	2	1.30779	0.752	0.476	0.001

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

82.0 Electrofishing	Number of Individuals				CPUE/ min. (1441 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	25	11	14		1.04094	0.46	0.583	0
Largemouth Bass					0	0	0	0
White Sucker	4	3	1		0.16655	0.12	0.042	0
Yellow Perch	6	3	3		0.24983	0.12	0.125	0
Spottail Shiner	27	27			1.12422	1.12	0	0
Fallfish	14	12	2		0.58293	0.5	0.083	0
Mimic Shiner	6	6			0.24983	0.25	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel	1		1		0.04164	0	0.042	0
Walleye	1		1		0.04164	0	0.042	0
Black Crappie	1	1			0.04164	0.04	0	0
Rock Bass	3	3			0.12491	0.12	0	0
Bluegill Sunfish					0	0	0	0
Pumpkinseed Sunfish					0	0	0	0
Northern Pike	1	1			0.04164	0.04	0	0
Chain Pickerel	1	1			0.04164	0.04	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	90	68	22	0	3.74741	2.81	0.917	0

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889))
Study Reports Comments and Responses	

80.1 Electrofishing	Number of Individuals				CPUE/min (1486 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	20	8	11	1	0.808	0.32	0.44	0.04
Largemouth Bass					0	0	0	0
White Sucker	6	4	1	1	0.242	0.16	0.04	0.04
Yellow Perch	8	2	6		0.323	0.08	0.24	0
Spottail Shiner	54	54			2.18	2.18	0	0
Fallfish	19	11	8		0.767	0.44	0.32	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye	3		3		0.121	0	0.12	0
Black Crappie					0	0	0	0
Rock Bass	1	1			0.04	0.04	0	0
Bluegill Sunfish					0	0	0	0
Pumpkinseed Sunfish					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	111	80	29	2	4.481	3.22	1.16	0.08

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

76.2 Electrofishing	Number of Individuals				CPUE/min. (1310 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	36	16	19	1	1.6489	0.7328	0.87	0.046
Largemouth Bass					0	0	0	0
White Sucker	1	1			0.0458	0.0458	0	0
Yellow Perch	1	1			0.0458	0.0458	0	0
Spottail Shiner	1	1			0.0458	0.0458	0	0
Fallfish	10	6	4		0.458	0.2748	0.183	0
Mimic Shiner					0	0	0	0
Golden Shiner	1		1		0.0458	0	0.046	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	7	4	3		0.3206	0.1832	0.137	0
Bluegill Sunfish	1	1			0.0458	0.0458	0	0
Pumpkinseed Sunfish					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	12	11		1	0.5496	0.5038	0	0.046
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	70	41	27	2	3.2061	1.8778	1.236	0.092

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

74.3 Electrofishing	Number of Individuals				CPUE/min. (1119 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	38	11	27		2.0375	0.5898	1.4477	0
Largemouth Bass					0	0	0	0
White Sucker	5	2	3		0.2681	0.1072	0.1609	0
Yellow Perch	7	6	1		0.3753	0.3217	0.0536	0
Spottail Shiner	8	8			0.429	0.429	0	0
Fallfish	7	4	3		0.3753	0.2145	0.1609	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye	1		1		0.0536	0	0.0536	0
Black Crappie					0	0	0	0
Rock Bass	2	1	1		0.1072	0.0536	0.0536	0
Bluegill Sunfish	1	1			0.0536	0.0536	0	0
Pumpkinseed Sunfish					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	69	33	36	0	3.6996	1.7694	1.9303	0

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

73.9 Electrofishing	Number of Individuals			CPUE/min (1322 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	17	6	11		0.7716	0.272	0.499	0
Largemouth Bass					0	0	0	0
White Sucker	5	4	1		0.2269	0.182	0.045	0
Yellow Perch	8	6	2		0.3631	0.272	0.091	0
Spottail Shiner	1	1			0.0454	0.045	0	0
Fallfish	1	1			0.0454	0.045	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel	3	2	1		0.1362	0.091	0.045	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	5	2	3		0.2269	0.091	0.136	0
Bluegill Sunfish	2	2			0.0908	0.091	0	0
Pumpkinseed Sunfish	1	1			0.0454	0.045	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp	1	1			0.0454	0.045	0	0
	44	26	18	0	1.9971	1.179	0.816	0

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

72.9 Electrofishing	Nu	Number of Individuals			CPUE/min (1481 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	39	16	23		1.58	0.6482	0.9318	0
Largemouth Bass					0	0	0	0
White Sucker	10	7	3		0.4051	0.2836	0.1215	0
Yellow Perch	7	5	1	1	0.2836	0.2026	0.0405	0.0405
Spottail Shiner	3	2		1	0.1215	0.081	0	0.0405
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	14	3	11		0.5672	0.1215	0.4456	0
Bluegill Sunfish					0	0	0	0
Pumpkinseed Sunfish					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish	1	1			0.0405	0.0405	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	74	34	38	2	2.9979	1.3774	1.5394	0.081

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

71.1 Electrofishing	Nu	Number of Individuals			CPUE/min (1473 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	2	2			0.0815	0.081	0	0
Largemouth Bass	3	1		2	0.1222	0.041	0	0.081
White Sucker	6	6			0.2444	0.244	0	0
Yellow Perch	38	36	2		1.5479	1.466	0.081	0
Spottail Shiner	290	290			11.813	11.81	0	0
Fallfish	2		2		0.0815	0	0.081	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye	5	5			0.2037	0.204	0	0
Black Crappie	2	2			0.0815	0.081	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish	10	10			0.4073	0.407	0	0
Pumpkinseed Sunfish	17	16	1		0.6925	0.652	0.041	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead	1	1			0.0407	0.041	0	0
Tessellated Darter	1	1			0.0407	0.041	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp	1	1			0.0407	0.041	0	0
	378	371	5	2	15.3976	15.109	0.203	0.081

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

70.1 (seine alternative)	Number of Individuals			CPU	CPUE/min (500 sec)			
Species	То	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass					0	0	0	0
Largemouth Bass					0	0	0	0
White Sucker					0	0	0	0
Yellow Perch	22	18	2	2	2.64	2.16	0.24	0.24
Spottail Shiner					0	0	0	0
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner	1	1			0.12	0.12	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish	7	4	1	2	0.84	0.48	0.12	0.24
Pumpkinseed Sunfish	6	6			0.72	0.72	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp	1	1			0.12	0.12	0	0
	37	30	3	4	4.44	3.6	0.36	0.48

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

69.9 Electrofishing	Number of Individuals			CPUE/min. (1559 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass					0	0	0	0
Largemouth Bass					0	0	0	0
White Sucker	2	2			0.077	0.077	0	0
Yellow Perch	21	20	1		0.8082	0.7697	0.0385	0
Spottail Shiner	2	2			0.077	0.077	0	0
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish	11	11			0.4233	0.4233	0	0
Pumpkinseed Sunfish	1	1			0.0385	0.0385	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	37	36	1	0	1.424	1.3855	0.0385	0

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 18	889)
Study Reports Comments and Responses	

69.6 (Seine alternative)	Number of Individuals			CPUE/sec by Time (500 sec)				
Species	Total	ADUL	JUV.	YOY	Total	ADUL	JUV.	YOY
Smallmouth Bass					0	0	0	0
Largemouth Bass	2			2	0	0	0.24	0
White Sucker					0	0	0	0
Yellow Perch	23	21	1	1	2.52	0.12	0.12	2.52
Spottail Shiner	25	25			3	0	0	3
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye	1	1			0.12	0	0	0.12
Black Crappie					0	0	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish	4	4			0.48	0	0	0.48
Pumpkinseed Sunfish	7	7			0.84	0	0	0.84
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	62	58	1	3	6.96	0.12	0.36	6.96
Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)							
--	-------							
Study Reports Comments and Responses								

69.5 Electrofishing	Number of Individuals CPUE/min (1672 sec				2 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	4	2	2		0.0143	0.0072	0.0072	0
Largemouth Bass	2	2			0.0072	0.0072	0	0
White Sucker	7	4	2	1	0.0251	0.0143	0.0072	0.0036
Yellow Perch	74	59	14	1	0.2654	0.2116	0.0502	0.0036
Spottail Shiner	175	125	50		0.6277	0.4484	0.1793	0
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner	1	1			0.0036	0.0036	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye	2	2			0.0072	0.0072	0	0
Black Crappie	1	1			0.0036	0.0036	0	0
Rock Bass	7	6	1		0.0251	0.0215	0.0036	0
Bluegill Sunfish	63	63			0.226	0.226	0	0
Pumpkinseed Sunfish	6	6			0.0215	0.0215	0	0
Northern Pike					0	0	0	0
Chain Pickerel	1	1			0.0036	0.0036	0	0
Channel Catfish					0	0	0	0
Brown Bullhead	2	2			0.0072	0.0072	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
	345	274	69	2	1.2375	0.9829	0.2475	0.0072

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

Impoundment September 2015								
87.0 Electrofishing	Num	Number of Individuals			CPL			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	80	7	33	40	2.7149	0.238	1.12	1.36
Largemouth Bass	2		2		0.0679	0	0.068	0
White Sucker	4	1	3		0.1357	0.034	0.102	0
Yellow Perch	33	6	22	5	1.1199	0.204	0.747	0.17
Spottail Shiner	18	14	3	1	0.6109	0.475	0.102	0.03
Fallfish	23	16	3	4	0.7805	0.543	0.102	0.14
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye	1	1			0.0339	0.034	0	0
Black Crappie					0	0	0	0
Rock Bass	16	5	10	1	0.543	0.17	0.339	0.03
Bluegill Sunfish	2	2			0.0679	0.068	0	0
Pumpkinseed Sunfish	1	1			0.0339	0.034	0	0
White Perch					0	0	0	0
Northern Pike	1	1			0.0339	0.034	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	1	1			0.0339	0.034	0	0
Sea Lamprey	11			11	0.3733	0	0	0.37
American Shad	1			1	0.0339	0	0	0.03
Common Carp	1	1			0.0339	0.034	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	195	56	76	63	6.6174	1.902	2.58	2.13

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

85.2 Electrofishing	Number of Individuals				CPUE/min (1439 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	18	5	10	3	0.7505	0.208	0.42	0.1251
Largemouth Bass					0	0	0	0
White Sucker	8	7	1		0.3336	0.292	0.04	0
Yellow Perch					0	0	0	0
Spottail Shiner	2		2		0.0834	0	0.08	0
Fallfish	11	11			0.4587	0.459	0	0
Mimic Shiner	2	2			0.0834	0.083	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	4	2	1	1	0.1668	0.083	0.04	0.0417
Bluegill Sunfish	1	1			0.0417	0.042	0	0
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey	1			1	0.0417	0	0	0.0417
American Shad	19			19	0.7922	0	0	0.7922
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	66	28	14	24	2.752	1.167	0.58	1.0007

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

84.3 Electrofishing	Num	Number of Individuals			CPUE/min (1880 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	59	15	26	18	1.883	0.48	0.8298	0.5745
Largemouth Bass	1		1		0.0319	0	0.0319	0
White Sucker	2	1	1		0.0638	0.03	0.0319	0
Yellow Perch	5	3	2		0.1596	0.1	0.0638	0
Spottail Shiner	28	21	7		0.8936	0.67	0.2234	0
Fallfish	31	18	11	2	0.9894	0.57	0.3511	0.0638
Mimic Shiner	2	2			0.0638	0.06	0	0
Golden Shiner	1			1	0.0319	0	0	0.0319
Common Shiner					0	0	0	0
American Eel	1	1			0.0319	0.03	0	0
Walleye	1		1		0.0319	0	0.0319	0
Black Crappie					0	0	0	0
Rock Bass	5	1	1	3	0.1596	0.03	0.0319	0.0957
Bluegill Sunfish	1	1			0.0319	0.03	0	0
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike	1	1			0.0319	0.03	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	2	2			0.0638	0.06	0	0
Sea Lamprey					0	0	0	0
American Shad	2			2	0.0638	0	0	0.0638
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	142	66	50	26	4.5318	2.09	1.5957	0.8297

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

82.1 (Virtual Seine)	Num	Number of Individuals				CPUE/min (1500 sec)		
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	16	3	10	3	0.64	0.12	0.4	0.12
Largemouth Bass	1		1		0.04	0	0.04	0
White Sucker	11		8	3	0.44	0	0.32	0.12
Yellow Perch					0	0	0	0
Spottail Shiner	108	90		18	4.32	3.6	0	0.72
Fallfish	44		35	9	1.76	0	1.4	0.36
Mimic Shiner					0	0	0	0
Golden Shiner	2		2		0.08	0	0.08	0
Common Shiner					0	0	0	0
American Eel	1	1			0.04	0.04	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	14	1	2	11	0.56	0.04	0.08	0.44
Bluegill Sunfish	1	1			0.04	0.04	0	0
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike	2	2			0.08	0.08	0	0
Chain Pickerel					0	0	0	0
Channel Catfish	2	1	1		0.08	0.04	0.04	0
Brown Bullhead					0	0	0	0
Tessellated Darter	5	4		1	0.2	0.16	0	0.04
Sea Lamprey					0	0	0	0
American Shad	15			15	0.6	0	0	0.6
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish	1			1	0.04	0	0	0.04
	223	103	59	61	8.92	4.12	2.36	2.44

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

82.0 Electrofishing	Num	Number of Individuals CPUE/min (1491 s			l sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	27	6	17	4	1.08652	0.241	0.68	0.161
Largemouth Bass	1		1		0.04024	0	0.04	0
White Sucker	3	2	1		0.12072	0.08	0.04	0
Yellow Perch	7	4	3		0.28169	0.161	0.12	0
Spottail Shiner	7	7			0.28169	0.282	0	0
Fallfish	36	21	15		1.44869	0.845	0.6	0
Mimic Shiner	6	6			0.24145	0.241	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel	1		1		0.04024	0	0.04	0
Walleye					0	0	0	0
Black Crappie	1	1			0.04024	0.04	0	0
Rock Bass	4		3	1	0.16097	0	0.12	0.0402
Bluegill Sunfish					0	0	0	0
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike	2		2		0.08048	0	0.08	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	4	3		1	0.16097	0.121	0	0.0402
Sea Lamprey					0	0	0	0
American Shad	15			15	0.60362	0	0	0.6036
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	114	50	43	21	4.58752	2.011	1.72	0.845

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1	889)
Study Reports Comments and Responses	

80.8 Electrofishing	Number of Individuals			CPUE/min (1880 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	33	6	24	3	1.0532	0.1915	0.77	0.0957
Largemouth Bass					0	0	0	0
White Sucker	2	2			0.0638	0.0638	0	0
Yellow Perch	11	4	5	2	0.3511	0.1277	0.16	0.0638
Spottail Shiner	2	2			0.0638	0.0638	0	0
Fallfish	11	8	3		0.3511	0.2553	0.1	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	3	1		2	0.0957	0.0319	0	0.0638
Bluegill Sunfish					0	0	0	0
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike	1		1		0.0319	0	0.03	0
Chain Pickerel					0	0	0	0
Channel Catfish	1	1			0.0319	0.0319	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	3	3			0.0957	0.0957	0	0
Sea Lamprey	1		1		0.0319	0	0.03	0
American Shad	1			1	0.0319	0	0	0.0319
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	69	27	34	8	2.202	0.8616	1.09	0.2552

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

80.1 Electrofishing	Number of Individuals			CPUE/min (1856 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	12	2	10		0.3879	0.065	0.323	0
Largemouth Bass					0	0	0	0
White Sucker					0	0	0	0
Yellow Perch					0	0	0	0
Spottail Shiner	41	41			1.3254	1.325	0	0
Fallfish	32	19	9	4	1.0345	0.614	0.291	0.129
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	1			1	0.0323	0	0	0.032
Bluegill Sunfish	2	1		1	0.0647	0.032	0	0.032
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad	6			6	0.194	0	0	0.194
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	94	63	19	12	3.0388	2.036	0.614	0.387

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

78.2 (Seine alternative)	Number of Individuals			CPUE/min (500 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	1	1			0.12	0.12	0	0
Largemouth Bass					0	0	0	0
White Sucker					0	0	0	0
Yellow Perch					0	0	0	0
Spottail Shiner					0	0	0	0
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish					0	0	0	0
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	1	1	0	0	0	0	0	0

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1	889)
Study Reports Comments and Responses	

77.0 Electrofishing	Number of Individuals			CPUE/min (2260 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	51	14	21	16	1.35398	0.3717	0.5575	0.4248
Largemouth Bass	2		2		0.0531	0	0.0531	0
White Sucker	1		1		0.02655	0	0.0265	0
Yellow Perch	12	2	5	5	0.31858	0.0531	0.1327	0.1327
Spottail Shiner	164	112	52		4.35398	2.9735	1.3805	0
Fallfish	31	7	15	9	0.82301	0.1858	0.3982	0.2389
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	7	2	2	3	0.18584	0.0531	0.0531	0.0796
Bluegill Sunfish	5	2		3	0.13274	0.0531	0	0.0796
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish	1			1	0.02655	0	0	0.0265
Brown Bullhead					0	0	0	0
Tessellated Darter	1			1	0.02655	0	0	0.0265
Sea Lamprey					0	0	0	0
American Shad	4			4	0.10619	0	0	0.1062
Common Carp					0	0	0	0
Rosyface Shiner	1			1	0.02655	0	0	0.0265
Banded Killifish	5		5		0.13274	0	0.1327	0
	285	139	103	43	7.56636	3.6903	2.7343	1.1413

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

76.1 Electrofishing	Number of Individuals			CPUE/min (1849 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	33	11	14	8	1.0708	0.357	0.454	0.26
Largemouth Bass	2		2		0.0649	0	0.065	0
White Sucker	6	3	2	1	0.1947	0.097	0.065	0.032
Yellow Perch	1			1	0.0324	0	0	0.032
Spottail Shiner	18		3	15	0.5841	0	0.097	0.487
Fallfish	19	9		10	0.6165	0.292	0	0.324
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel	1		1		0.0324	0	0.032	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass	8			8	0.2596	0	0	0.26
Bluegill Sunfish					0	0	0	0
Pumpkinseed Sunfish					0	0	0	0
White Perch	1		1		0.0324	0	0.032	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	1	1			0.0324	0.032	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	90	24	23	43	2.9202	0.778	0.745	1.395

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

71.2 Electrofishing	Number of Individuals			CPUE/min (1929 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	45	20	25		1.39969	0.62	0.78	0
Largemouth Bass	10	1	9		0.31104	0.03	0.28	0
White Sucker	1	1			0.0311	0.03	0	0
Yellow Perch	9	1	3	5	0.27994	0.03	0.09	0.156
Spottail Shiner	77	15		62	2.39502	0.47	0	1.928
Fallfish	3	1	2		0.09331	0.03	0.06	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye	2		2		0.06221	0	0.06	0
Black Crappie					0	0	0	0
Rock Bass	6	2	3	1	0.18663	0.06	0.09	0.031
Bluegill Sunfish	14	14			0.43546	0.44	0	0
Pumpkinseed Sunfish	1	1			0.0311	0.03	0	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish	1	1			0.0311	0.03	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	1	1			0.0311	0.03	0	0
Sea Lamprey					0	0	0	0
American Shad	3			3	0.09331	0	0	0.093
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish	1	1		1	0.0311	0.03	0	0.031
	174	59	44	72	5.41211	1.83	1.36	2.239

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

71.1 (Virtual Seine)	Nur	nber of Indiv	iduals		CPUE/min (500 sec)			
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass					0	0	0	0
Largemouth Bass	1		1		0.12	0	0.12	0
White Sucker					0	0	0	0
Yellow Perch	8		8		0.96	0	0.96	0
Spottail Shiner					0	0	0	0
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish	2	2			0.24	0.24	0	0
Pumpkinseed Sunfish	2	2			0.24	0.24	0	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad					0	0	0	0
Common Carp	2	2			0.24	0.24	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish	2	2			0.24	0.24	0	0
	17	8	9	0	2.04	0.96	1.08	0

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

70.5 Electrofishing	Number of Individuals			CPUE/min (1929 sec)				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	12	7	5		0.37325	0.218	0.16	0
Largemouth Bass	13		9	4	0.40435	0	0.28	0.124
White Sucker	5	4	1		0.15552	0.124	0.03	0
Yellow Perch	68	16	27	25	2.11509	0.498	0.84	0.778
Spottail Shiner	320*				9.95334	0	0	0
Fallfish					0	0	0	0
Mimic Shiner	2		2		0.06221	0	0.06	0
Golden Shiner	2			2	0.06221	0	0	0.062
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie	1	1			0.0311	0.031	0	0
Rock Bass	5	3	1	1	0.15552	0.093	0.03	0.031
Bluegill Sunfish	44	38	4	2	1.36858	1.182	0.12	0.062
Pumpkinseed Sunfish	18	15	3		0.55988	0.467	0.09	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad	10			10	0.31104	0	0	0.311
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
	500	84	52	44	15.55209	2.613	1.61	1.368

*not sorted by lifestage

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

70.0 Electrofishing	Num	Number of Individuals				CPUE/min (1674 sec)		
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	3	1	2		0.10753	0.03584	0.0717	0
Largemouth Bass	12	3	6	3	0.43011	0.10753	0.2151	0.10753
White Sucker	4		4		0.14337	0	0.1434	0
Yellow Perch	45	12	10	23	1.6129	0.43011	0.3584	0.82437
Spottail Shiner	211	70		141	7.56272	2.50896	0	5.05376
Fallfish					0	0	0	0
Mimic Shiner	3			3	0.10753	0	0	0.10753
Golden Shiner	6	6			0.21505	0.21505	0	0
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye					0	0	0	0
Black Crappie	2	1	1		0.07168	0.03584	0.0358	0
Rock Bass	3	2	1		0.10753	0.07168	0.0358	0
Bluegill Sunfish	17	14	2	1	0.60932	0.50179	0.0717	0.03584
Pumpkinseed Sunfish	7	6	1		0.2509	0.21505	0.0358	0
White Perch					0	0	0	0
Northern Pike	1	1			0.03584	0.03584	0	0
Chain Pickerel	1	1			0.03584	0.03584	0	0
Channel Catfish	1	1			0.03584	0.03584	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter					0	0	0	0
Sea Lamprey					0	0	0	0
American Shad	1			1	0.03584	0	0	0.03584
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish	12	8		4	0.43011	0.28674	0	0.14337
	329	126	27	176	11.79211	4.51611	0.9677	6.30824

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

69.5 Electrofishing	Num	Number of IndividualsCPUE/min (2116 sec)				CPUE/min (2116 sec)		
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	4	2		2	0.11342	0.06	0	0.0567
Largemouth Bass	8		5	3	0.22684	0	0.142	0.0851
White Sucker	13	1	12		0.36862	0.03	0.34	0
Yellow Perch	58	11	6	41	1.64461	0.31	0.17	1.1626
Spottail Shiner	271	64	207		7.68431	1.81	5.87	0
Fallfish					0	0	0	0
Mimic Shiner	1		1		0.02836	0	0.028	0
Golden Shiner	1			1	0.02836	0	0	0.0284
Common Shiner					0	0	0	0
American Eel					0	0	0	0
Walleye	1	1			0.02836	0.03	0	0
Black Crappie	2	2			0.05671	0.06	0	0
Rock Bass	2	2			0.05671	0.06	0	0
Bluegill Sunfish	24	20	1	3	0.68053	0.57	0.028	0.0851
Pumpkinseed Sunfish	14	5	9		0.39698	0.14	0.255	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead	1	1			0.02836	0.03	0	0
Tessellated Darter	2	1		1	0.06	0.03	0	0.03
Sea Lamprey					0	0	0	0
American Shad	20			20	0.56711	0	0	0.5671
Common Carp	1	1			0.02836	0.03	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish	4	2		2	0.11342	0.06	0	0.0567
	427	113	241	73	12.10777	3.19	6.833	2.0701

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

Plunge Pool Below Number of Individuals Cl Dam				Number of Individuals				
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	48	19	22	7	1.10727	0.44	0.507	0.161
Largemouth Bass	1		1		0.02307	0	0.023	0
White Sucker	10	10			0.23068	0.23	0	0
Yellow Perch					0	0	0	0
Spottail Shiner					0	0	0	0
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel	16		8	8	0.36909	0	0.185	0.185
Walleye	1		1		0.02307	0	0.023	0
Black Crappie					0	0	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish	12	9		3	0.27682	0.21	0	0.069
Pumpkinseed Sunfish	8	4	4		0.18454	0.09	0.092	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	4	4			0.09227	0.09	0	0
Sea Lamprey	1			1	0.02307	0	0	0.023
American Shad					0	0	0	0
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
Hybrid Sunfish					0	0	0	0
Longnose Dace					0	0	0	0
	101	46	36	19	2.32988	1.06	0.83	0.438

Bypass Reach September 2015

	n i uniped stor	Study Report	s Comme	nts and R	lesponses	iij uioeieetii	erregeer	(1.0. 100
Pool-Run Above Station No. 1	Nun	nber of Indiv	iduals		CPU	E/min (1609	sec)	
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	67	5	39	23	2.498446	0.1865	1.454	0.86
Largemouth Bass					0	0	0	0
White Sucker					0	0	0	0
Yellow Perch					0	0	0	0
Spottail Shiner					0	0	0	0
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel	1	1			0.03729	0.0373	0	0
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish	9	1	1	7	0.335612	0.0373	0.037	0.26
Pumpkinseed Sunfish	8	1	3	4	0.298322	0.0373	0.112	0.15
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0

0.07458

0.03729

3.28154

0.0373

0.3357

1.603

0.04

1.31

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889)

* Lifestage not specified

Channel Catfish

Brown Bullhead

Sea Lamprey

American Shad

Common Carp

Rosyface Shiner

Banded Killifish

Hybrid Sunfish*

Longnose Dace

Tessellated Darter

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

Riffle-Run Bellow Station No.1	Nur	nber of Indiv	iduals		СРІ	JE/min (1709	er sec)	
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY
Smallmouth Bass	30	10	15	5	1.6682	0.5561	0.834	0.278
Largemouth Bass					0	0	0	0
White Sucker	2	2			0.1112	0.1112	0	0
Yellow Perch					0	0	0	0
Spottail Shiner					0	0	0	0
Fallfish					0	0	0	0
Mimic Shiner					0	0	0	0
Golden Shiner					0	0	0	0
Common Shiner					0	0	0	0
American Eel	7		4	3	0.3892	0	0.222	0.167
Walleye					0	0	0	0
Black Crappie					0	0	0	0
Rock Bass					0	0	0	0
Bluegill Sunfish					0	0	0	0
Pumpkinseed Sunfish					0	0	0	0
White Perch					0	0	0	0
Northern Pike					0	0	0	0
Chain Pickerel					0	0	0	0
Channel Catfish					0	0	0	0
Brown Bullhead					0	0	0	0
Tessellated Darter	2	2			0.1112	0.1112	0	0
Sea Lamprey	1		1		0.0556	0	0.056	0
American Shad					0	0	0	0
Common Carp					0	0	0	0
Rosyface Shiner					0	0	0	0
Banded Killifish					0	0	0	0
Hybrid Sunfish					0	0	0	0
Longnose Dace	1	1			0.0556	0.0556	0	0
	43	15	20	8	2.391	0.8341	1.112	0.445

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

Rock Dam Pool	Nun	nber of Indiv	iduals		CPUE/min (1800 sec)						
Species	Total	ADULT	JUV.	YOY	Total	ADULT	JUV.	YOY			
Smallmouth Bass	23	6	9	8	0.7667	0.2	0.3	0.2667			
Largemouth Bass					0	0	0	0			
White Sucker	1		1		0.0333	0	0.0333	0			
Yellow Perch	1			1	0.0333	0	0	0.0333			
Spottail Shiner	1		1		0.0333	0	0.0333	0			
Fallfish					0	0	0	0			
Mimic Shiner	1		1		0.0333	0	0.0333	0			
Golden Shiner					0	0	0	0			
Common Shiner					0	0	0	0			
American Eel	2		2		0.0667	0	0.0667	0			
Walleye					0	0	0	0			
Black Crappie					0	0	0	0			
Rock Bass					0	0	0	0			
Bluegill Sunfish	1	1			0.0333	0.033	0	0			
Pumpkinseed Sunfish					0	0	0	0			
White Perch					0	0	0	0			
Northern Pike	1	1			0.0333	0.033	0	0			
Chain Pickerel					0	0	0	0			
Channel Catfish					0	0	0	0			
Brown Bullhead	1			1	0.0333	0	0	0.0333			
Tessellated Darter	4	3		1	0.1333	0.1	0	0.0333			
Sea Lamprey	1			1	0.0333	0	0	0.0333			
American Shad					0	0	0	0			
Common Carp					0	0	0	0			
Rosyface Shiner					0	0	0	0			
Banded Killifish					0	0	0	0			
Hybrid Sunfish					0	0	0	0			
Longnose Dace					0	0	0	0			
	37	11	14	12	1.2331	0.366	0.4666	0.3999			

					(Good	Ha	bitat	Att	ribut	tes			Poor Habitat Attributes															
River Mile	Date	QHE I	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Five or More Substrate Types	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 100 cm	No Riffle Embeddedness	"Good" Habitat Attributes	Impounded	Channelized or No Recovery	Silt/Muck Substrates	Sparse No Cover	Max Depths <70 cm	Recovering from Channelization	Mod-High Silt Cover	Fair- Poor Development	<u><</u> 2 Cover Types	Slow or No current Flow	Mod-Extensive Embeddedness	Mod-Extensive Riffle	No Riffle	Poor Habitat Attributes	Ration of Good (High) to Poor	Ration of Poor (All) to Good
87	21-Sep-15	80.8											8														0	9	0.11
85.5	22-Jun-15	68											4								•			•	•		3	1.25	0.8
85.2	21-Sep-15	54											3	•							•			•		•	3	1	1
84.5	22-Jun-15	54											3	•							•			•		•	3	1	1
84.3	21-Sep-15	60											5	•							•						1	3	0.33
84	22-Jun-15	55											3	•							•			•		•	3	1	1
82.1	21-Sep-15	53.8											3	•							•			•		•	3	1	1
82	22-Jun-15	54		_									3	•							•		•	•		•	4	0.8	1.25
80.8	23-Sep-15	52.5											3	•							•			•		•	3	1	1
80.1	08-Jul-15	52.5											3	•			•				•		•	•		•	5	0.67	1.5
78.2	22-Sep-15	46.5											2	•			•				•		•	•		•	5	0.5	2
77.6	07-Jul-15	43											1	•			•				•	•	•	•		•	6	0.29	3.5
77	22-Sep-15	56.8		_									3	•							•		•	•		•	4	0.8	1.25
76.2	18-Jul-15	59.5											4	•			_				•			•		•	3	1.25	0.8
76.1	22-Sep-05	48											2	•			•				•		•	•		•	5	0.5	2
74.3	07-Jul-15	47.5											2	•			•				•		•	•		•	5	0.5	2
73.9	07-Jul-15	53.5											3	•							•		•	•		•	4	0.8	1.25
72.9	08-Jul-15	57.3	\square										3	•							•		•	•		•	4	0.8	1.25
71.2	23-Sep-15	60											2	•							•		•	•		•	4	0.6	1.67
71.1	23-Sep-15	53.5											3	•						•	•		•	•		•	5	0.67	1.5
71.1	08-Jul-15	56											2	•						•	•		•	•		•	5	0.5	2
70.5	23-Sep-15	49											2	•						•	•		•	•		•	5	0.5	2
70.1	08-Jul-15	50.5											2	•							•		•	•		•	4	0.6	1.67

Attachment B of Study 3.3.11. Good and poor QHEI habitat attributes for the Connecticut River sampled by MBI during 2015

					(Good	Hał	oitat	Att	ibut	es			Poor Habitat Attributes															
River Mile	Date	QHE I	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Five or More Substrate Types	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 100 cm	No Riffle Embeddedness	"Good" Habitat Attributes	Impounded	Channelized or No Recovery	Silt/Muck Substrates	Sparse No Cover	Max Depths <70 cm	Recovering from Channelization	Mod-High Silt Cover	Fair- Poor Development	≤2 Cover Types	Slow or No current Flow	Mod-Extensive Embeddedness	Mod-Extensive Riffle	No Riffle	Poor Habitat Attributes	Ration of Good (High) to Poor	Ration of Poor (All) to Good
70	23-Sep-15	49.5											2	•						•			•	•			5	0.5	2
69.9	08-Jul-15	44.5											2	•		•				•	•		•	•		•	6	0.43	2.33
69.6	08-Jul-15	46											2	•		•				•	•		•	•		•	6	0.43	2.33
69.5	23-Sep-15	53											2	•							•		•	•		•	4	0.6	1.67
69.5	09-Jul-15	43											2	•		•				•	•		•	•		•	6	0.43	2.33
67.8	24-Sep-15	77.5											8														0	9	0.11
67.5	24-Sep-15	80.5											8														0	9	0.11
67	24-Sep-15	88											8														0	9	0.11

Attachment C of Study 3.3.11.

Length and Weight and Length Frequency Data for Fish Sampled in The Turners Falls Project

Table of Contents

1.0	ROCK BA	SS	2
	1.1	Length and weight of rock bass collected in the Turners Falls Impoundment during 2015	2
	1.2	Length-frequency of rock bass collected in the Turners Falls impoundment during 2015	3
2.0	PUMPKIN	SEED SUNFISH	4
	2.1	Length and weight of pumpkinseed sunfish collected in the Turners Falls Impoundment during 20)15
			4
	2.2	Length-frequency of pumpkinseed sunfish collected in the Turners Falls impoundment during 201	154
3.0	YELLOW	Perch	5
	3.1	Length and weight of Yellow Perch collected in the Turners Falls Impoundment during 2015	5
	3.2	Length-frequency of yellow perch collected in the Turners Falls impoundment during 2015	13
4.0	WHITE S	UCKER	14
	4.1	Length and weight of white sucker collected in the Turners Falls Impoundment during 2015	14
	4.2	Length-frequency of white sucker collected in the Turners Falls impoundment during 2015	22
5.0	WALLEY	Ξ	23
	5.1	Length and weight of walleye collected in the Turners Falls Impoundment during 2015	24
	5.2	Length-frequency of walleye collected in the Turners Falls impoundment during 2015	25
6.0	LARGEM	DUTH BASS	26
	6.1	Length and weight of largemouth bass collected in the Turners Falls Impoundment during 2015	26
	6.2	Length-frequency of largemouth bass collected in the Turners Falls impoundment during 2015	28
7.0	BLUEGIL	L SUNFISH	29
	7.1	Length and weight of bluegill sunfish collected in the Turners Falls Impoundment during 2015	29
	7.2	Length-frequency of bluegill sunfish collected in the Turners Falls Impoundment during 2015	33
8.0	FALLFISH	[34
	8.1	Length and weight of fallfish collected in the Turners Falls Impoundment during 2015	34
	8.2	Length-frequency of fallfish collected in the Turners Falls impoundment during 2015	41
9.0	SMALLMO	DUTH BASS	42
	9.1	Length and weight of smallmouth bass collected in the Turners Falls Impoundment during 2015	42
	9.2	Length-frequency of smallmouth bass collected in the Turners Falls impoundment during 2015	53
10.0	AMERICA	N SHAD	54
	10.1	Length and weight of American shad collected in the Turners Falls Impoundment during 2015	54
	10.2	Length-frequency of American shad collected in the Turners Falls impoundment during 2015	57
11.0			50
11.0	AMERICA	N EEL	58
11.0	AMERICA	Length and weight of American eel collected in the Turners Falls Impoundment during 2015	58 58

1.0 ROCK BASS

1.1 Length and weight of rock bass collected in the Turners Falls Impoundment during 2015

Rock Bass											
June-	July	Septem	lber								
Length (mm)	Weight (g)	Length (mm)	Weight (g)								
99	20	191	130								
96	15	195	150								
140	70	173	100								
145	60	170	95								
180	110	222	230								
140	60	168	80								
145	70	162	90								
135	50	176	100								
245	290	180	100								
220	200	211	200								
145	175	173	100								
160	70	213	200								
240	280	188	130								
160	80	220	210								
180	140	238	260								
220	200	130	50								
165	60	257	360								
170	100	212	200								
195	190	214	200								
175	130	201	200								
215	210	210	190								
175	130	97	15								
250	320	96	15								
175	140	104	20								
190	170	95	15								
195	170	87	12								
150	85	105	20								
150	75	98	20								
195	200	52	3								
180	120	52	3								
150	90	47	1								
75	12	47	1								
		47	1								
		47	1								
		47	1								
		47	1								
		47	1								
		47	1								
		36	1								
		32	1								
		36	1								
		47	1								
		50	3								
		32	1								
		102	20								
		108	25								
		80	10								

1.2 Length-frequency of rock bass collected in the Turners Falls impoundment during 2015

Re	ock Bass	
Length Class (mm)	June-July	September
25	0	0
50	0	14
75	1	2
100	2	6
125	0	4
150	9	1
175	7	5
200	7	5
225	3	8
250	3	1
275	0	1
300	0	0

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889)

2.0 PUMPKINSEED SUNFISH

2.1 Length and weight of pumpkinseed sunfish collected in the Turners Falls Impoundment during2015

2.2 Length-frequency of pumpkinseed sunfish collected in the Turners Falls impoundment during

2015

Pumpki	nseed Sunfish	
Length Class (mm)	June-July	September
25	0	0
50	0	0
75	1	0
100	0	7
125	0	12
150	5	4
175	22	12
200	9	8
225	1	2
250	0	0
275	0	0
300	0	0

3.0 YELLOW PERCH

3.1 Length and weight of Yellow Perch collected in the Turners Falls Impoundment during 2015

Yellow Perch										
June-July September										
Length (mm)	Weight (g)	Length (mm)	Weight (g)							
190	80	165	50							
185	70	230	140							

Yellow Perch										
June-	July	Septen	nber							
Length (mm)	Weight (g)	Length (mm)	Weight (g)							
250	190	200	80							
180	60	170	50							
170	40	166	45							
160	60	187	70							
175	70	199	80							
210	100	159	45							
180	80	167	50							
195	100	179	50							
190	90	185	70							
170	60	162	40							
175	70	219	100							
180	70	217	120							
165	50	210	100							
230	160	205	90							
190	80	220	110							
215	120	170	50							
210	120	176	55							
160	45	188	60							
175	70	174	50							
215	110	205	100							
200	90	137	30							
205	110	180	60							
205	90	185	65							
165	50	170	50							
180	75	168	50							
175	65	136	40							
150	50	241	150							
210	110	212	100							
120	70	163	40							
165	60	223	120							
145	30	158	40							
165	50	177	55							
255	190	195	70							
175	70	177	50							
220	140	180	50							
195	100	130	20							
195	70	130	25							
210	100	173	50							
185	60	185	70							

Yellow Perch										
June	July	Septen	nber							
Length (mm)	Weight (g)	Length (mm)	Weight (g)							
195	80	170	50							
270	230	150	30							
175	70	267	250							
185	70	191	90							
180	70	170	60							
210	100	160	50							
155	50	235	160							
205		156	45							
160	50	140	30							
175	90	142	30							
155	60	151	45							
160	50	223	140							
195	70	150	45							
105	15	246	220							
180	70	225	150							
200	90	183	80							
165	70	162	50							
205	100	155	50							
165	70	147	40							
175	60	123	20							
180	80	116	15							
155	50	127	20							
180	70	108	10							
125	100	116	15							
190	80	116	15							
190	90	120	18							
125	20	120	18							
195	100	120	18							
230	160	134	20							
215	120	83	10							
240	180	132	25							
160	60	123	20							
180	70	130	25							
185	95	87	10							
165	65	115	16							
180	75	115	16							
215	125	115	16							
175	80	115	16							
200	100	115	16							

Yellow Perch				
June-July September				
Length (mm)	Weight (g)	Length (mm)	Weight (g)	
170	65	115	16	
170	65	115	16	
170	70	115	16	
180	90	115	16	
195	100	115	16	
205	100	115	16	
255	200	115	16	
205	100	115	16	
170	70	115	16	
195	90	115	16	
190	90	115	16	
180	70	115	16	
200	100	115	16	
360	420	115	16	
120	30	115	16	
240	175	115	16	
225	120	115	16	
180	75	115	16	
125	50	115	16	
195	80	115	16	
200	120	117	20	
165	60	123	20	
195	90	126	20	
190	85	90	10	
165	60	136	20	
250	210	132	20	
175	60	83	10	
205	120	117	20	
175	145	89	10	
165	40	90	10	
165	50	138	20	
195	80	130	20	
235	150	143	25	
160	40	132	20	
180	60	99	10	
160	40	93	10	
235	150	89	10	
210	100	89	10	
170	75	100	15	

Yellow Perch			
June-July September			
Length (mm)	Weight (g)	Length (mm)	Weight (g)
185	80	90	10
200	100	95	10
190	95	95	10
170	70	92	10
180	70	108	10
210	110	108	12
160	50	105	10
210	100	116	20
180	80	114	20
210	110	15	112
190	85	15	112
185	70	15	112
260	200	15	112
195	100	97	10
295	270	105	15
225	150	95	15
260	200	101	20
220	140	106	20
165	70	106	15
170	50	95	10
160	40	97	12
245	160	95	10
160	60	100	10
215	110	109	20
170	70	116	20
190	85	96	10
200	85	100	10
170	65	103	12
165	55	101	10
210	120	100	10
150	45	105	15
180	20	100	10
180	70	102	10
160	40	105	15
150	50	101	20
180	70	57	5
235	150	58	5
265	240	68	6
120	50	71	5

Yellow Perch			
June-July September			
Length (mm)	Weight (g)	Length (mm)	Weight (g)
200	95	70	5
185	80	70	5
190	95	76	6
185	70	67	5
190	105	70	5
210	110	65	5
230	170	69	5
210	115	61	6
210	120	75	6
170	70	60	4
160	60	60	4
165	60	60	4
295	350	60	4
200	95	60	4
210	120	60	4
310	440	60	4
220	160	60	4
195	100	60	4
300	400	60	4
170	60	60	4
220	145	60	4
265	245	60	4
210	115	60	4
180	80	60	4
185	90	60	4
170	65	60	4
180	55	60	4
210	120	60	4
280	290	60	4
215	190	60	4
240	185	60	4
285	365	60	4
310	380	60	4
255	235	60	4
225	150	60	4
200	120	60	4
250	225	60	4
165	70	67	5
215	145	67	5

Yellow Perch			
June-July September			
Length (mm)	Weight (g)	Length (mm)	Weight (g)
230	180	67	5
220	155	67	5
115	10	67	5
95	10	67	5
105	20	67	5
95	8	67	5
105	15	67	5
100	18	67	5
145	20	67	5
110	20	67	5
160	30	67	5
95	8	67	5
110	10	72	6
110	10	73	6
100	15	83	6
105	15	80	8
105	10	82	8
100	10	85	8
155	30	72	8
115	20	25	8
105	18	70	5
95	10	70	5
110	20	70	5
110	10	70	5
100	10	70	5
120	20	70	5
125	25	70	5
125	25	70	5
125	20	70	5
135	30	70	5
90	10	70	5
100	10	70	5
105	10	70	5
110	25	70	5
100	8	63	6
110	35	83	6
105	30	74	6
135	45	75	6
120	28	67	6

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No	1889)
Study Reports Comments and Responses	

Yellow Perch			
June-July		September	
Length (mm)	Weight (g)	Length (mm)	Weight (g)
104	10	62	5
42	2	71	6
		65	6
		70	6
		77	8
		75	8
		87	8
		80	8
		81	8
		86	8
		72	6
		84	8
		80	5
		84	7
		80	5
		91	8
		80	7
		84	8
		85	8
		88	8

Yellow Perch				
Length Class (mm)	June-July	September		
25	0	0		
50	0	0		
75	0	0		
100	0	1		
125	11	54		
150	29	20		
175	7	20		
200	57	16		
225	65	10		
250	38	4		
275	14	1		
300	8	0		
325	5	0		
350	2	0		
375	0	0		
400	1	0		
425	0	0		
450	0	0		
475	0	0		
500	0	0		

3.2 Length-frequency of yellow perch collected in the Turners Falls impoundment during 2015

Study No. 3.3.11 Attachment C -Page 13

4.0 WHITE SUCKER

4.1

Length and weight of white sucker collected in the Turners Falls Impoundment during 2015

White Sucker				
June-	-July September			
Length (mm)	Weight (g)	Length (mm)	Weight (g)	
480	1300	480	1260	
485	1340	415	950	
485	1500	415	890	
500	1520	394	680	
530	1580	473	1120	
435	980	420	1170	
465	1240	483	1200	
390	700	442	900	
505	1660	450	1010	
520	1530	395	630	
495	1490	393	710	
405	880	470	1160	
435	990	495	1090	
450	1070	406	780	
430	920	465	1370	
430	1080	470	1210	
435	950	404	800	
425	920	487	1260	
460	1080	495	1280	
390	850	451	1080	
370	600	460	1150	
475	1250	502	1310	
395	680	444	1000	
475	1230	456	1100	
460	1080	430	910	
445	800	386	720	
265	270	132	25	
280	280	100	20	
160	45	118	20	
130	30	109	15	
175	40	112	20	
290	280	102	15	
330	420	74	10	
35	3.6	120	25	
35	3.6	105	20	
35	3.6	83	10	
35	3.6	91	10	
White Sucker				
---------------------	------------	-------------	------------	
June-July September				
Length (mm)	Weight (g)	Length (mm)	Weight (g)	
35	3.6	91	10	
35	3.6	95	10	
35	3.6	111	12	
35	3.6	94	10	
35	3.6	112	15	
35	3.6	122	20	
35	3.6	271	220	
35	3.6	226	250	
35	3.6	276	240	
35	3.6	101	10	
35	3.6	119	20	
35	3.6	204	80	
35	3.6	105	12	
35	3.6	105	12	
35	3.6	111	15	
35	3.6	103	10	
35	3.6	116	15	
35	3.6	113	20	
35	3.6	103	10	
35	3.6	123	20	
35	3.6	315	390	
35	3.6	155	50	
35	3.6	133	30	
35	3.6	113	20	
35	3.6	72	4	
35	3.6	82	6	
35	3.6	90	8	
35	3.6	95	8	
35	3.6			
35	3.6			
35	3.6			
35	3.6			
35	3.6			
35	3.6			
35	3.6			
35	3.6			
35	3.6			
35	3.6			
35	3.6			

White Sucker			
June-July September			nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		

White Sucker			
June-July September			nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		

White Sucker			
June-J	June-July September		
Length (mm)	Weight (g)	Length (mm)	Weight (g)
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		

White Sucker			
June-July		Septen	nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		

White Sucker			
June-J	June-July September		
Length (mm)	Weight (g)	Length (mm)	Weight (g)
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		

White Sucker			
June-J	June-July September		
Length (mm)	Weight (g)	Length (mm)	Weight (g)
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		

White Sucker			
June-	June-July		nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
500	1400		
490	1390		
510	1430		
440	1050		
480	1280		
430	940		
500	1380		
485	1300		
480	1230		
465	1080		
385	670		
435	870		
380	700		
165	50		
210	120		

4.2 Length-frequency of white sucker collected in the Turners Falls impoundment during 2015

White Sucker				
Length Class (mm)SeptemberJune-July				
25	0	0		

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No.	1889)
Study Reports Comments and Responses	

White Sucker			
Length Class (mm)	September	June-July	
50	0	277	
75	2	0	
100	9	0	
125	20	0	
150	2	1	
175	1	3	
200	0	0	
225	1	1	
250	1	0	
275	1	1	
300	1	2	
325	1	0	
350	0	1	
375	0	1	
400	4	5	
425	5	2	
450	4	10	
475	7	6	
500	5	11	

Note: n = 200 for 50mm length class

5.0 WALLEYE

5.1 Length and weight of walleye collected in the Turners Falls Impoundment during 2015

Walleye			
June-	July	September	
Length (mm)	Weight (g)	Length (mm)	Weight (g)
400	510	530	1440
225	100	302	422
420	620	148	30
215	100	375	450
385	470	256	120
230	100	146	25
215	85	256	120
480	870	146	25
395	560		
170	50		
240	110		
245	140		
190	50		
220	90		
210	110		
235	90		
315	140		
190	80		
170	50		
240	110		
245	140		
190	50		
220	90		
210	110		
235	90		
315	140		
190	80		

5.2 Length-frequency of walleye collected in the Turners Falls impoundment during 2015

, v	Walleye	
Length Class (mm)	September	June-July
100	0	0
125	0	0
150	3	0
175	0	2
200	0	4
225	0	7
250	0	7
275	2	0
300	0	0
325	1	2
350	0	0
375	1	0
400	0	3
425	0	1
450	0	0
475	0	0
500	0	1
525	0	0
550	1	0

V	Walleye	
Length Class (mm)	September	June-July
575	0	0
600	0	0

6.0 LARGEMOUTH BASS

6.1 Length and weight of largemouth bass collected in the Turners Falls Impoundment during 2015

Largemouth Bass				
June-	July	Septen	nber	
Length (mm)	Weight (g)	Length (mm) Weight		
315	400	349	540	
410	880	336	620	
345	520	173	65	
50	2	147	45	
50	4	173	60	
25	1	215	250	
45	2	122	15	
		99	10	
		115	20	
		105	12	
		78	10	
		133	30	

	Largemo	outh Bass	
June-July September			
Length (mm)	Weight (g)	Length (mm)	Weight (g)
		92	10
		103	10
		105	12
		143	45
		142	50
		119	20
		136	35
		92	10
		133	20
		120	15
		118	20
		112	20
		91	10
		91	10
		117	20
		148	40
		150	50
		132	30
		101	10
		119	15
		87	10
		87	10
		117	15
		143	30
		146	40
		155	55
		130	30
		123	20
		120	30
		99	15
		75	8
		66	8
		78	8
		70	6
		65	6
		67	6
		83	9
		73	8
		77	8

Largemouth Bass				
June-July		September		
Length (mm)	Weight (g)	Length (mm)	Weight (g)	
		67	7	

6.2 Length-frequency of largemouth bass collected in the Turners Falls impoundment during 2015

Largemouth Bass			
Length Class (mm)	September	June-July	
25	0	1	
50	0	3	
75	7	0	
100	12	0	
125	15	0	
150	12	0	
175	3	0	
200	0	0	
225	1	0	
250	0	0	
275	0	0	
300	0	0	
325	0	1	
350	2	1	
375	0	0	

Largemouth Bass				
Length Class (mm)	September	June-July		
400	0	0		
425	0	1		

7.0 BLUEGILL SUNFISH

7.1	Length and	weight o	f bluegill	sunfish	collected	in the	Turners	Falls	Impoundment	during	2015
-----	------------	----------	------------	---------	-----------	--------	---------	-------	-------------	--------	------

	Bluegill	Sunfish	
June-	July	Septen	nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
160	100	165	80
135	50	164	90
155	75	182	110
125	40	192	150
150	70	205	160
180	100	201	150
160	90	178	100
165	100	150	55
120	50	134	40
125	110	181	110
125	110	146	50
170	100	157	70
145	70	185	110

	Bluegill	Sunfish			
June	June-July September				
Length (mm)	Weight (g)	Length (mm)	Weight (g)		
150	80	144	50		
160	90	170	100		
160	70	161	70		
120	40	144	55		
170	100	130	30		
200	110	115	25		
140	50	160	75		
195	110	143	60		
160	90	187	150		
160	80	191	160		
130	70	214	200		
185	120	162	90		
180	60	183	150		
125	110	165	90		
160	100	144	60		
155	80	143	65		
140	50	178	115		
145	20	176	110		
145	70	170	100		
125	110	130	45		
180	120	127	45		
165	100	165	90		
175	100	157	70		
180	100	189	160		
160	80	157	70		
130	45	162	90		
185	140	176	110		
120	100	189	160		
190	120	165	90		
160	80	165	90		
150	60	178	115		
180	130	176	110		
160	85	170	100		
200	160	165	90		
155	70	165	90		
140	60	185	125		
160	90	178	110		
185	120	175	100		
180	140	199	200		

	Bluegill	Sunfish			
June	June-July September				
Length (mm)	Weight (g)	Length (mm)	Weight (g)		
130	30	189	130		
120	40	192	150		
130	40	203	200		
150	70	190	140		
160	90	192	150		
140	70	153	70		
155	80	143	50		
150	80	206	215		
140	50	122	35		
155	70	182	120		
160	100	176	110		
185	120	155	70		
160	195	181	115		
180	150	177	115		
165	190	180	110		
180	160	212	240		
190	145	177	110		
190	160	170	100		
180	110	176	130		
175	120	142	60		
165	110	165	90		
160	100	183	120		
180	150	185	130		
195	160	177	110		
165	110	184	130		
175	120	185	150		
195	125	203	190		
140	45	213	220		
185	100	200	200		
140	60	181	110		
145	70	205	230		
160	90	225	250		
170	110	169	100		
175	110	206	160		
155	75	162	90		
130	50	211	200		
160	90	156	85		
160	100	217	260		
150	65	223	250		

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889)
Study Reports Comments and Responses

Bluegill Sunfish			
June	July	Septen	nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
155	100	205	200
175	130	133	40
190	150	215	250
190	160	218	200
190	150	212	230
200	240	202	240
185	185	95	10
175	135	97	20
195	150	95	20
205	180	110	35
110	30	110	35
50	3	110	35
45	3	110	20
		54	3
		47	2
		50	3
		59	6
		37	1
		37	1
		40	1
		30	1
		42	1

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889) Study Reports Comments and Responses

7.2 Length-frequency of bluegill sunfish collected in the Turners Falls Impoundment during 2015

Bluegill Sunfish			
Length Class (mm)	September	June-July	
25	0	0	
50	7	2	
75	2	0	
100	3	0	
125	6	10	
150	14	23	
175	26	39	
200	36	29	
225	19	1	
250	0	0	

8.0 FALLFISH

8.1 Length and weight of fallfish collected in the Turners Falls Impoundment during 2015

Fallfish			
June-	July	September	
Length (mm)	Weight (g)	Length (mm)	Weight (g)
115	25	372	510
180	70	334	350
130	30	405	520
215	120	406	550
175	50	370	430
155	45	150	30
215	115	176	50
280	240	164	40
265	210	158	40
210	110	148	30
200	90	152	30
97	10	175	50
170	60	165	40
140	30	160	40
180	60	135	25
190	90	139	30
190	80	136	20

Fallfish			
June-July Septen			nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
135	25	264	170
150	30	232	130
145	30	150	30
180	70	245	130
195	90	255	170
175	60	135	20
115	30	216	100
150	35	155	35
180	70	143	30
185	60	166	40
160	60	162	40
200	100	150	35
145	40	157	40
170	50	150	30
430	760	148	30
180	70	159	35
210	110	150	40
200	100	169	50
190	95	150	30
170	65	147	30
280	270	245	150
155	50	234	110
200	40	230	120
90	7	245	150
80	5	147	30
100	6	136	20
90	12	149	30
75	10	146	30
105	15	153	30
100	10	158	40
100	20	158	40
100	12	241	140
110	15	239	130
95	8	232	120
110	12	223	120
110	20	236	130
95	15	135	25
105	10	133	25
115	20	167	40

Fallfish			
June	June-July Septem		nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
105	10	131	25
90	8	152	30
90	8	135	20
90	8	159	40
90	8	187	60
105	15	153	40
105	8	159	40
100	10	166	50
100	10	144	30
75	6	166	45
73	10	138	25
73	10	166	40
73	10	150	30
73	10	128	20
73	10	151	30
73	10	221	130
73	10	216	100
105	10	216	100
75	6	216	100
75	6	216	100
75	6	165	40
75	6	135	20
75	6	150	30
75	6	140	30
75	6	152	30
75	6	235	120
75	6	137	25
75	6	168	40
75	6	167	40
75	6	156	40
75	6	143	30
		161	40
		151	40
		160	40
		133	30
		149	30
		149	30
		145	30
		355	400

Fallfish			
June-July September			nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
		240	150
		240	140
		251	150
		215	100
		225	100
		154	40
		147	30
		155	40
		148	30
		165	50
		226	115
		128	20
		213	100
		165	50
		173	50
		152	40
		172	50
		146	35
		170	50
		139	35
		146	30
		165	40
		144	30
		142	30
		172	50
		137	30
		126	20
		136	20
		142	20
		127	20
		140	20
		105	10
		126	15
		130	20
		127	20
		105	10
		118	15
		104	10
		128	20

Fallfish			
June-July		Septen	nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
		132	20
		119	15
		115	15
		143	20
		130	20
		126	15
		157	40
		139	30
		139	30
		125	15
		128	20
		123	15
		105	12
		105	12
		105	12
		105	12
		105	12
		105	12
		105	12
		105	12
		105	12
		106	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15

Fallfish			
June-J	July	Septen	nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		117	15
		110	12
		110	12
		110	12
		100	10
		113	10
		122	15
		111	10
		115	15
		113	15
		122	15
		121	15
		122	30
		131	20
		127	20
		67	3
		70	4
		68	3
		68	4
		81	5
		73	4
		74	4
		74	4
		68	3
		63	3
		59	2

Fallfish			
June-	July	September	
Length (mm)	Weight (g)	Length (mm)	Weight (g)
		70	3
		65	3
		56	2
		65	3
		68	3
		70	3
		68	3
		65	3
		65	3
		68	3
		70	3
		68	3
		70	3
		70	3
		70	3
		70	3
		70	3
		70	3
		70	3
		70	3
		70	3
		65	3
		62	3
		65	3
		81	4
		76	4
		84	4

8.2 Length-frequency of fallfish collected in the Turners Falls impoundment during 2015

F	allfish	
Length Class (mm)	September	June-July
25	0	0
50	0	0
75	0	0
100	22	34
125	16	5
150	12	60
175	7	62
200	8	43
225	14	2
250	4	10
275	0	14
300	1	3
325	2	0
350	0	0
375	0	1
400	0	3
425	0	0
450	0	2
475	1	0
500	0	0

9.0 SMALLMOUTH BASS

9.1 Length and weight of smallmouth bass collected in the Turners Falls Impoundment during 2015

Smallmouth Bass			
June-	July	September	
Length (mm)	Weight (g)	Length (mm)	Weight (g)
240	160	248	200
210	130	183	70
225	150	175	70
180	80	170	70
220	145	238	150
290	370	182	80
275	250	222	135
310	400	170	55
190	100	179	75
220	150	176	55
200	100	307	300
250	200	225	120
225	150	232	120
220	150	158	60
230	150	189	70
235	170	245	150
270	235	251	155

Smallmouth Bass			
June	June-July Septen		
Length (mm)	Weight (g)	Length (mm)	Weight (g)
200	200	247	160
215	130	225	130
170	70	236	160
250	210	272	240
230	170	235	155
295	350	230	150
250	235	166	55
240	190	160	50
270	235	176	65
225	130	162	50
210	115	165	50
220	160	163	50
220	155	173	60
215	140	284	260
220	150	272	210
255	220	286	260
210	160	229	150
310	365	288	290
225	180	171	70
225	140	195	80
210	110	174	50
220	145	171	60
210	120	163	60
260	210	160	50
290	310	281	300
240	170	378	600
230	150	360	540
330	460	303	330
230	160	168	50
240	210	180	70
245	200	181	65
260	230	163	50
275	300	170	65
270	270	166	55
260	235	184	80
230	170	178	70
310	360	171	70
255	210	160	55
280	290	287	250

Smallmouth Bass			
June-July September			nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
270	250	160	50
270	300	220	120
275	300	325	450
290	300	320	430
265	150	162	50
470	1315	162	50
280	310	180	80
350	640	162	50
240	220	412	810
345	510	177	70
210	160	197	80
230	180	195	100
240	210	175	65
210	160	177	65
240	200	161	50
175	80	205	100
240	190	373	560
425	860	458	1200
340	520	379	730
260	280	412	850
230	200	286	300
245	220	380	600
245	205	352	500
250	230	327	420
225	150	306	350
190	80	295	350
240	200	219	120
290	320	263	170
280	360	165	50
305	380	186	80
415	960	166	50
235	200	165	50
305	410	420	870
210	125	370	550
440	1150	308	320
280	350	285	270
225	195	299	300
240	220	382	705
255	245	330	420

Smallmouth Bass			
June-July Septembe			nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
420	960	279	240
305	390	301	300
265	255	273	240
300	410	232	160
345	560	274	240
270	265	242	180
375	650	168	50
225	150	108	15
225	160	86	10
200	195	159	45
225	140	100	10
120	25	92	12
95	15	85	10
110	12	157	45
120	20	150	35
95	12	103	10
95	15	139	30
95	18	148	30
100	18	103	10
110	12	137	30
100	12	149	40
90	10	143	35
115	12	150	40
115	20	142	30
110	15	110	12
95	15	92	10
90	12	145	30
105	15	133	25
100	10	142	30
110	15	96	10
120	45	149	30
110	15	145	30
100	15	133	40
110	30	113	20
95	20	92	10
105	15	127	20
130	28	147	40
120	20	139	30
110	15	106	15

Smallmouth Bass			
June	July	September	
Length (mm)	Weight (g)	Length (mm)	Weight (g)
110	15	100	12
125	45	89	10
135	45	152	50
95	25	103	15
125	50	103	10
105	30	98	10
110	25	148	30
90	15	151	30
95	10	94	10
80	5	96	10
105	10	97	10
105	15	105	12
90	20	102	12
110	25	100	10
100	25	103	12
115	30	92	10
105	18	150	30
115	25	145	40
100	20	152	50
95	18	93	10
105	22	95	10
95	20	143	40
100	20	145	50
110	22	156	50
95	12	113	20
105	18	102	15
110	20	150	50
120	20	156	50
95	15	158	50
90	15	112	20
100	18	156	50
115	35	142	45
95	15	105	15
110	30	100	12
100	22	86	10
130	40	151	40
80	10	148	35
80	10	106	10
95	15	100	10

Smallmouth Bass			
June-July September			nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
95	15	91	10
90	15	107	12
120	20	98	10
120	22	96	10
85	10	153	50
105	20	107	20
95	12	121	30
90	10	145	30
105	15	156	50
110	20	107	20
110	20	100	15
100	15	100	15
80	12	97	15
115	25	101	15
90	12	106	15
110	20	95	15
110	20	108	15
95	15	111	20
120	30	91	10
110	15	95	10
105	12	88	10
125	20	94	12
105	20	87	10
115	20	90	10
105	20	97	12
110	20	85	10
110	10	90	10
110	20	102	20
130	40	90	10
110	15	109	15
105	20	118	20
85	10	100	10
145	20	153	50
140	30	89	10
95	10	152	50
100	8	106	15
100	10	155	50
125	30	95	10
90	7	112	20

Smallmouth Bass			
June-July September			
Length (mm)	Weight (g)	Length (mm)	Weight (g)
95	10	100	10
120	40	89	10
120	40	95	10
150	50	94	10
100	10	100	10
100	12	109	15
110	20	93	10
110	25	150	40
110	35	120	20
95	28	101	10
140	55	95	10
90	28	112	10
115	25	115	20
115	25	104	15
100	10	96	10
95	25	92	10
100	10	100	10
80	10	158	40
110	30	153	30
115	15	90	10
105	15	153	40
95	20	107	10
35	2	96	10
45	1	155	50
		92	10
		146	40
		94	10
		103	12
		106	12
		90	10
		102	10
		90	10
		93	10
		101	10
		138	30
		95	10
		105	10
		101	10
		150	40

Smallmouth Bass			
June-July September			nber
Length (mm)	Weight (g)	Length (mm)	Weight (g)
		150	40
		150	40
		150	40
		107	10
		118	20
		98	10
		111	20
		102	10
		105	12
		95	10
		107	15
		107	12
		103	10
		97	10
		90	10
		153	40
		107	10
		146	40
		155	50
		92	10
		146	40
		146	40
		92	10
		146	40
		130	30
		146	40
		146	40
		157	50
		110	10
		150	40
		155	50
		112	20
		92	10
		105	15
		107	20
		95	10
		93	10
		100	12
		97	10

Smallmouth Bass					
June-July September			nber		
Length (mm)	Weight (g)	Length (mm)	Weight (g)		
		92	10		
		106	12		
		105	20		
		97	10		
		95	10		
		107	20		
		151	50		
		67	4		
		60	4		
		74	6		
		90	8		
		65	6		
		75	8		
		77	8		
		75	8		
		60	5		
		78	8		
		85	6		
		88	8		
		87	8		
		63	5		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		110	12		
		75	8		
		78	8		
		74	8		
		83	8		
		83	8		
Smallmouth Bass					
-----------------	------------	-------------	------------	--	--
June-J	July	Septen	nber		
Length (mm)	Weight (g)	Length (mm)	Weight (g)		
		58	5		
		72	7		
		67	4		
		90	8		
		80	8		
		29	5		
		89	8		
		80	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		91	8		
		90	8		
		90	8		
		73	5		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		

Smallmouth Bass					
June-	July	Septen	nber		
Length (mm)	Weight (g)	Length (mm)	Weight (g)		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		80	8		
		86	7		
		80	7		
		75	5		
		87	8		
		81	8		

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889) Study Reports Comments and Responses

9.2 Length-frequency of smallmouth bass collected in the Turners Falls impoundment during 2015

Smallmouth Bass							
length class (mm)	June-July	September					
25	0	0					
50	0	1					
75	2	15					
100	0	141					
125	55	71					
150	65	41					
175	8	55					
200	2	17					
225	6	6					
250	27	11					
275	26	6					
300	18	10					
325	10	7					
350	6	2					
375	5	4					
400	1	4					
425	0	3					
450	3	0					
475	1	1					
500	1	0					

10.0 AMERICAN SHAD

10.1 Length and weight of American shad collected in the Turners Falls Impoundment during 2015

American Shad					
June-July		Septen	nber		
Length (mm)	Weight (g)	Length (mm)	Weight (g)		
		87	8		
		95	9		
		85	8		
		95	10		
		83	8		
		85	8		
		84	8		
		73	6		
		80	6		
		87	8		
		87	8		
		80	8		
		81	8		
		87	8		
		80	8		
		81	8		
		85	8		

American Shad					
June-J	July	Septen	nber		
Length (mm)	Weight (g)	Length (mm)	Weight (g)		
		93	8		
		83	8		
		87	8		
		84	8		
		101	10		
		76	8		
		67	7		
		81	8		
		98	10		
		77	8		
		95	10		
		95	10		
		77	8		
		95	10		
		82	8		
		72	7		
		82	8		
		103	10		
		100	10		
		95	10		
		101	10		
		92	10		
		80	5		
		68	5		
		80	5		
		85	7		
		78	5		
		74	8		
		91	6		
		91	6		
		91	6		
		91	6		
		91	6		
		91	6		
		91	6		
		91	6		
		91	6		
		91	6		
		91	6		

American Shad					
June-July		Septen	nber		
Length (mm)	Weight (g)	Length (mm)	Weight (g)		
		91	6		
		91	6		
		91	6		
		91	6		
		97	10		
		110	12		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		92	7		
		93	10		

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889) Study Reports Comments and Responses

10.2 Length-frequency of American shad collected in the Turners Falls impoundment during 2015

American Shad					
Length Class (mm)	June-July	September			
25		0			
50		0			
75		5			
100		73			
125		4			

11.0 AMERICAN EEL

11.1 Length and weight of American eel collected in the Turners Falls Impoundment during 2015

American Eel						
June-	June-July		nber			
Length (mm)	Weight (g)	Length (mm)	Weight (g)			
835	1200	700	720			
920	1400	750	720			
420	160	550	410			
750	700	250	80			
750	600					
750	600					
840	950					
250	80					

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889) Study Reports Comments and Responses

11.2 Length-frequency of American eel collected in the Turners Falls impoundment during 2015

American Eel							
Length Class (mm)	June-July	September					
200	0	0					
225	0	0					
250	0	1					
275	1	0					
300	0	0					
325	0	0					
350	0	0					
375	0	0					
400	0	0					
425	0	0					
450	1	0					
475	0	0					
500	0	0					
525	0	0					
550	0	1					
575	0	0					
600	0	0					
625	0	0					
650	0	0					
675	0	0					

American Eel						
Length Class (mm)	June-July	September				
700	0	1				
725	0	0				
750	0	1				
775	3	0				
800	0	0				
825	0	0				
850	0	0				
875	2	0				
900	0	0				
925	0	0				
950	1	0				
975	0	0				
1000	0	0				

STUDY 3.3.12 ATTACHMENTS

> Attachment A to Study 3.3.12. Vermont Stream Geomorphic Assessment. Particle Entrainment and Transport

Vermont Stream Geomorphic Assessment

Appendix O

Particle Entrainment and Transport

Vermont Agency of Natural Resources May, 2009

Particle Entrainment and Transport

Introduction

What follows is an introduction to basic concepts associated with measurement and prediction of entrainment and transport of bed material in natural rivers. The purpose of this discussion is to familiarize the reader with methods for predicting particle entrainment and their limitations. This discussion does not represent the full breadth of study and research on this subject matter. Rather it introduces core principles and gives background on methods of entrainment prediction most commonly used by river management practitioners.

The Importance of Bedload Transport: Understanding characteristics of sediment transport benefits many applications including prediction of the effects of land use or flow regime change and channel restoration efforts (Wilcock, 2001). The relationship between discharge and bedload transport rate through a reach and the ability of the existing channel to transport the bedload (sediment transport capacity) is critical to the establishment of river equilibrium in river corridor protection and restoration efforts. Measuring the size and quantity of bedload particles moving through a reach at different discharges and developing a sediment rating curve is the ideal predictive tool for project design. Once the conditions required for bedload transport are known, they can be translated into an understanding of the channel dimension, pattern, and profile that will result in sufficient transport of the expected sediment supply.

Measuring Bedload Transport: Unfortunately, bedload transport is not simple to measure or predict. It is a sporadic process that occurs through a variety of mechanisms. Its variability both spatially and temporally add to the difficulty. Bedload measurement is particularly challenging for river managers to conduct due to its high cost and the length of time over which it takes to accurately complete. Additionally, sampling devices placed in the flow may perturb local hydraulics sufficiently to create anomalously high or low transport conditions (Wohl, 2000). Despite these difficulties, efforts to understand bed-load transport and its relation to flow discharge are worthwhile and can lead to better assessment and project design.

Sediment Entrainment Calculation

In lieu of creating sediment rating curves on a project by project basis, practitioners have had fairly good results using empirically derived equations for the prediction of the conditions necessary to entrain bed particles and designing channels to produce those conditions. While the first efforts in this area resulted in equations that were accurate only when applied to channels with homogeneous bed sediments, more recent efforts have resulted in equations that are applicable to natural rivers.

The parameter often used as a measure of the stream's ability to entrain bed material is the shear stress created by the flow acting on the bed material. Shear stress acts in the direction of the flow as it slides along the channel bed and banks. Critical shear stress is the shear stress required to mobilize sediments delivered to the channel. When the shear stress equals the critical shear stress, the channel will likely be in equilibrium. Where shear stress is excessively greater than critical shear stress, channel degradation will likely result. Where the shear stress is less than critical shear stress, channel aggradation will likely result. Thus the ability to calculate or measure both shear and critical shear stress is crucial in understanding channel adjustments.

Calculating Shear Stress: Unfortunately, attempts to calculate or measure shear stress values in mountain rivers are complicated by the channel bed roughness and the associated turbulence and velocity fluctuations (Wohl, 2000). Turbulence can lead to substantial variability in velocity and shear stress at a point during constant discharge. Heterogeneities caused by grains and bedforms may create substantial velocity and shear

stress variations across the channel or downstream during a constant discharge. Despite these issues measurement of the general shear stress in a reach is feasible and useful.

Based upon the physical properties involved, the following theoretical equation for general shear stress has been developed.

$$\tau = \gamma Rs$$
 (lbs./sq.ft.),

where τ is the fluid shear stress

 γ is the specific gravity of water (density x gravitational acceleration) (1.94 slugs x 32.2 ft/sq.sec) = 62.4 lbs./sq.ft. R is the hydraulic radius (approximately mean depth) s is the slope of the channel

The Physical Properties Involved

Initiation of motion involves mass, force, friction and stress. Gravity and friction are the two primary forces in play as water flows through a channel. Gravity acts upon water to move it down slope. Friction exerted on the water by the bed and banks of the channel works to slow the movement of the water. When the force of gravity is equal and opposite to the force of friction the water flows through the channel at a constant velocity. When the force of gravity is greater than the force of friction the water accelerates (Leopold et.al., 1964).

Shear Stress vs. a Particle Resistance to Movement: A given particle will move only when the shear stress acting on it is greater than the resistance of the particle to movement. The magnitude of shear stress required to move a given particle is known as the critical shear stress (τ_{cr}). The resistance of the particles to movement and thus its entrainment will vary depending on its size, its size relative to surrounding particles, how it is oriented and the degree to which it is embedded. The size of the particle will influence the weight of the particle. The size of the particles relative to surrounding particles will affect the amount of shear stress the particle is exposed to via the "hiding" factor. Orientation of the particle will affect the force required to roll the particle along the bed. Packing or embeddedness will affect the amount of shear stress that the particle is exposed to.

Because of turbulence the hiding affect may be the primary factor in determining critical shear stress. Turbulence can result in shear stress spikes that are four times greater than the average shear stress. Thus a particle exposed to turbulence will experience greater fluid force than a particle not exposed to the turbulence. There is a layer of water just above the stream bed that is not turbulent. The thickness of this layer is sufficient to cover the average particle size of the bed. A larger particle however, will extend above this zone of non-turbulent flow and be exposed to turbulent flow. Thus, a particle surrounded by smaller particles will experience turbulence while a particle that is the same size as the average bed size will experience only non-turbulent flow and thus be exposed to less fluid shear stress. Accurate estimations of critical shear stress requires accurate characterization of these parameters (Wohl, 2000).

Calculating Critical Shear Stress: With the above principles in mind, Shields in 1936 conducted flume experiments to develop an expression for the critical shear stress to move a particle of a given size (Knighton, 1998). His work resulted in the following equation:

$$\tau_{cr} = \tau_{ci} \times g(\rho_s - \rho_w)d$$

where;

 τ_{cr} is critical shear stress,

 au_{ci} is dimensionless critical shear stress,

g is acceleration due to gravity,

 ρ_s is the density of sediment,

 ρ_{ws} is the density of water; and

d is the size of the particle of interest.

Shields' studies showed that in gravel bed channels of homogeneous sediment sizes and turbulent flow the value of dimensionless critical shear stress is 0.06. Shields' still serves as a basis for defining critical shear stress (Fischenich, 2001). However, since Sheilds' work other researchers have developed derivations of Shields' equation in an effort to improve the prediction of critical shear in natural channels with heterogeneous substrate sizes.

Fischenich, (2001) lists the following equations presented by Julien to approximate the critical shear stress for particles of various sizes.

 $\tau_{cr} = 0.5 \times g(\rho_s - \rho_w)d \times Tan\phi \qquad :For clays$ $\tau_{cr} = 0.25d_*^{-0.6} \times g(\rho_s - \rho_w)d \times Tan\phi \qquad :For silts and sands$ $\tau_{cr} = 0.06 \times g(\rho_s - \rho_w)d \times Tan\phi \qquad :For gravels and cobbles$

Where;

$$d_* = d \left[\frac{(G-1)g}{v^2} \right]^{1/3}$$

- ϕ is the angle of repose of the particle
- G is the specific gravity of sediment
- g is acceleration due to gravity,
- ρ_s is the density of sediment,
- ρ_{ws} is the density of water
- v is the kinematic velocity; and
- d is the size of the particle of interest.

Angles of repose are given in Table 1 (Julien, 1995). Critical shear stresses are also provided in Table 1. It is important to realize that mixtures of sediments behave differently than uniform sediments. Particles larger than the median will be entrained at shear stresses lower than those given in Table 1 and, conversely, larger shear stresses than those listed in the table are required to entrain particles smaller than the median size (Fischenich, 2001).

 	-	2200	-	 ~	- /	-	-/	_	 ·

Class name	d _s (in)	ф (deg)	\boldsymbol{v}_{c}	τ _{cr} (lb/sf)	V _{*c} (ft/s)	
Boulder						
Very large	>80	42	0.054	37.4	4.36	
Large	>40	42	0.054	18.7	3.08	
Medium	>20	42	0.054	9.3	2.20	
Small	>10	42	0.054	4.7	1.54	
Cobble						
Large	>5	42	0.054	2.3	1.08	
Small	>2.5	41	0.052	1.1	0.75	
Gravel						
Very coarse	>1.3	40	0.050	0.54	0.52	
Coarse	>0.6	38	0.047	0.25	0.36	
Medium	>0.3	36	0.044	0.12	0.24	
Fine	>0.16	35	0.042	0.06	0.17	
Very fine	>0.08	33	0.039	0.03	0.12	
Sands						
Very coarse	>0.04	32	0.029	0.01	0.070	
Coarse	>0.02	31	0.033	0.006	0.055	
Medium	>0.01	30	0.048	0.004	0.045	
Fine	>0.005	30	0.072	0.003	0.040	
Very fine	>0.003	30	0.109	0.002	0.035	
Silts						
Coarse	>0.002	30	0.165	0.001	0.030	
Medium	>0.001	30	0.25	0.001	0.025	

Table 1 Limiting Shear Stress and Velocity For Uniform Noncohesive Sediments

Since Shields conducted his work further research has shown that τ_{ci} can range from 0.25-0.02 depending upon the size distribution of the bed particles. Andrews (1984) showed that τ_{ci} can be calculated using the following equation:

	N 0.072	where;	
$\mathcal{T}^{*}_{ci} = 0.0834 \left(\frac{d}{d_s} \right)$	$\left(\frac{i}{i}\right)^{-0.872}$	$d_i \\ d_{ss}$	is the particle size of interest is the median particle size of the sub-surface

Andrews equation can be used to calculate τ^*_{ci} which can then be used in the Shields equation to determine the critical shear stress required to move a particle of a given size in gravel-cobble bed streams. As discussed in Step 2.7 of the Phase 3 handbook, d_i and $d_{S_{50}}$ can be determined through field sampling.

Cautions and the use of Multiple Methodologies

It is important to remember that the equations presented above, while used widely, are not used exclusively. The predictive tools presented here are understood to be general in nature and may not be appropriate for all situations. As stated above there are many variables associated with measurement or calculation of shear stress, critical shear stress and bed-load transport. Despite the uncertainties, the weighing of river management alternatives will benefit from attempts to develop as accurate an understanding as possible. Otherwise, assessment, river corridor protection, and restoration efforts are less likely to meet established goals. Careful use of prediction and application methods and an understanding of the limitations of those methods, will greatly improve project outcomes and helps explain the variables and uncertainties that are inherent in river assessment and management work. Following these guidelines will increase the likelihood of success.

- Increase your own expertise by reviewing the literature. Below is a list references that pertain to the subject of sediment transport processes. A review of this literature will greatly increase your understanding of the methods for analyzing sediment transport processes and associated limitations.
- Employ multiple methodologies and seek convergence. Methods for calculation and measurement of shear stress and critical shear stress are described above. This is by no means a complete list: nor are the individual methods in the list preferred by the River management Program. Use as many various analyses as possible given particular circumstances and evaluate the results on how well they agree with other data pertaining to the project or assessment.

References

- 1. Andrews, E.D., Entrainment of Gravel From Naturally Sorted Riverbed Material. Geological Society of America Bulletin, v.94, p. 1225-1231, October 1983.
- 2. Knighton, D., Fluvial Forms and Processes A New Perspective. 1998. Oxford University Press Inc. New York.
- Fischenich. 2001. Stability Thresholds for Stream Restoration Materials. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-29), U.S. Army Engineer Research and Development Center, Vicksburg, M.S. www.wes.army.mil/e/emrrp
- 4. Leopold, L.B., M.G. Wolman, and J.P. Miller. 1964. Fluvial Processes in Geomorphology. W.H. Freeman and Co. San Fransisco.
- 5. Wohl, E. 2000. Mountain Rivers. American Geophysical Union. Washington, D.C.
- 6. Wilcock, P.R. Toward a Practical Method For Estimating Sediment Transport Rates in Gravel Bed Rivers. Earth Surface Processes and Landforms, v.26, p. 1395-1408, September 2001.

Attachment B to Study 3.3.12. Relation between Grain diameter for Entrainment and shear stress using Shields relations

Part 654

Chapter 11

Rosgen Geomorphic Channel Design

National Engineering Handbook

Figure 11-11 Relation between grain diameter for entrainment and shear stress using Shields relations

O Leopold, Wolman, and Miller 1964

Colorado data (Wildland Hydrology)

STUDY 3.3.20 ATTACHMENTS

Data	Don	Life	S	Volume	Density (x	U :4 1	Un:4 3	Un:4 2	Un:4 4
5/28/2015	1	Egg	5 Sum	100.12	100m) 5			off	
5/28/2015	1	Egg	5	100.12	5	on	011	011	011
5/28/2015	2	Egg	l	100.68	l	on	on	off	on
6/5/2015	1	Egg	2	100.01	2	off	on	on	on
6/5/2015	2	Egg	3	100.45	3	off	on	on	on
6/9/2015	1	Egg	5	100.40	5	on	on	on	on
6/9/2015	2	Egg	3	102.90	3	on	on	on	on
6/10/2015	1	Egg	3	111.18	3	off	on	on	on
6/10/2015	2	Egg	4	100.76	4	off	on	on	on
6/11/2015	1	Egg	12	100.28	12	off	on	on	on
6/11/2015	2	Egg	31	100.00	31	off	on	on	on
6/16/2015	1	Egg	3	100.13	3	off	on	on	on
6/16/2015	2	Egg	8	100.09	8	on	on	on	on
6/18/2015	2	Egg	2	100.22	2	on	on	off	off
6/19/2015	1	Egg	1	101.31	1	off	on	off	off
6/19/2015	2	Egg	2	107.21	2	off	on	off	off
6/26/2015	2	Egg	1	100.89	1	off	on	on	on
7/1/2015	1	Egg	0	99.92	0	off	on	on	on
7/1/2015	2	Egg	0	100.04	0	off	on	on	on
7/8/2015	1	Egg	0	100.26	0	on	on	on	on
7/8/2015	2	Egg	0	100.03	0	on	on	on	on
7/17/2015	1	Egg	0	100.19	0	off	on	off	off

	Attachment A to Study 3.3.20.
Table 4.1-2.	Northfield Mountain Project American Shad Ichthyoplankton Entrainment Densities.

Sample Number	Week No.	Date	Time	Life Stage	Count	Volume (m ³)	Density (org/100 m ³)
1	24	6/9/2015	1:40	Е	3	107	2.80
1	24	6/9/2015	1:40	L	0	107	0.00
2	24	6/9/2015	2:01	Е	0	102	0.00
2	24	6/9/2015	2:01	L	0	102	0.00
3	24	6/9/2015	2:17	Е	0	105	0.00
3	24	6/9/2015	2:17	L	0	105	0.00
4	24	6/10/2015	1:40	Е	0	108	0.00
4	24	6/10/2015	1:40	L	1	108	0.93
5	24	6/10/2015	1:51	Е	0	112	0.00
5	24	6/10/2015	1:51	L	0	112	0.00
6	24	6/10/2015	2:04	Е	0	148	0.00
6	24	6/10/2015	2:04	L	0	148	0.00
7	25	6/18/2015	1:10	Е	0	147	0.00
7	25	6/18/2015	1:10	L	0	147	0.00
8	25	6/18/2015	1:35	Е	0	196	0.00
8	25	6/18/2015	1:35	L	0	196	0.00
9	25	6/18/2015	2:00	Е	1	156	0.64
9	25	6/18/2015	2:00	L	0	156	0.00
10	25	6/19/2015	1:00	Е	2	194	1.03
10	25	6/19/2015	1:00	L	0	194	0.00
11	25	6/19/2015	1:25	Е	2	178	1.12
11	25	6/19/2015	1:25	L	0	178	0.00
12	25	6/19/2015	1:40	Е	2	173	1.16
12	25	6/19/2015	1:40	L	0	173	0.00

Attachment B to Study 3.3.20. Table 4.2-1. Northfield Mountain Project American Shad Ichthyoplankton Densities in Offshore Samples

Filed Date: 05/31/2016

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889) Study Reports Comments and Responses

Week of	No. of Pumps	No. of Minutes	No. of Hours
May 15, 2015*	1	210	3.50
May 15, 2015*	2	420	7.00
May 15, 2015*	3	105	1.75
May 17, 2015	1	900	15.00
May 17, 2015	2	1230	20.50
May 17, 2015	3	900	15.00
May 24, 2015	1	390	6.50
May 24, 2015	2	720	12.00
May 24, 2015	3	1110	18.50
May 24, 2015	4	330	5.50
May 31, 2015	1	1425	23.75
May 31, 2015	2	600	10.00
May 31, 2015	3	540	9.00
May 31, 2015	4	285	4.75
June 7, 2015	1	585	9.75
June 7, 2015	2	1110	18.50
June 7, 2015	3	600	10.00
June 7, 2015	4	285	4.75
June 14, 2015	1	840	14.00
June 14, 2015	2	885	14.75
June 14, 2015	3	645	10.75
June 14, 2015	4	525	8.75
June 21, 2015	1	705	11.75
June 21, 2015	2	825	13.75
June 21, 2015	3	1155	19.25
June 21, 2015	4	120	2.00
June 28, 2015	1	600	10.00
June 28, 2015	2	660	11.00
June 28, 2015	3	780	13.00
June 28, 2015	4	585	9.75
July 5, 2015	1	840	14.00
July 5, 2015	2	615	10.25
July 5, 2015	3	945	15.75
July 5, 2015	4	660	11.00
July 12, 2015	1	585	9.75
July 12, 2015	2	540	9.00
July 12, 2015	3	180	3.00

Attachment C to Study 3.3.20. The total time of pumping with 1, 2, 3 & 4 pumps, by week, from May 15 to July 15 for 2015.

* This week starts Friday May 15, 2015

Attachment D to Study 3.3.20

The total time by pump for the nights in 2015 when samples were collected with more than one pump operating.

Sample No.	Unit 1 Duration	Unit 2 Duration	Unit 3 Duration	Unit 4 Duration
1	165	165		165
2	120	120		120
3	15	135	135	135
4	30	150	150	150
5	135	135	135	135
6	90	105	90	105
7		135	135	135
8		120	75	120
9		135	90	135
10		150	105	165
11	120	120	45	120
12	120	120	45	105
13	120	120		
14	135	135		
17		120	60	120
18		135	120	135
19		135	135	75
20		135	135	75
21	105	135	135	135
22	150	150	150	150
23		30	30	

STUDY 3.4.1 ATTACHMENTS

Attachment A to Study 3.4.1 Turners Falls Study Area Plant List

Common Name	Scientific Name
alternate-leaved dogwood	Swida alternifolia
American basswood	Tilia americana
American beech	Fagus grandifolia
American chestnut	Castanea dentata
American elm	Ulmus americana
American hazelnut	Corylus americana
American hornbeam	Carpinus caroliniana
American pokeweed	Phytolacca americana
American speedwell	Veronica americana
American witch-hazel	Hamamelis virginiana
anise-scented goldenrod	Solidago odora
arrow arum	Peltandra virginica
arrow-leaved tearthumb	Persicaria sagittata
arrowwood	Viburnum dentatum
Asian bush honeysuckle	Lonicera sp.
Asiatic dayflower	Commelina communis
asparagus	Asparagus officinalis
autumn olive	Elaeagnus umbellata**
balsam fir	Abies balsamea
barberpole sedge	Scirpus microcarpus
bearberry	Arctostaphylos uva-ursi
bedstraw	Gallium spp.
bee balm	Monarda didyma
big bluestem	Andropogon gerardii
big-star sedge	Carex rosea
bigtooth aspen	Populus grandidentata
bird's-foot trefoil	Lotus corniculatus
bittersweet nightshade	Solanum dulcamara
black cherry	Prunus serotina
black chokeberry	Aronia melanocarpa
black elderberry	Sambucus nigra
black gum	Nyssa sylvatica
black locust	Robinia pseudoacacia**
black oak	Quercus velutina
black swallow-wort	Cynanchum louiseae**
black-eyed Susan	Rudbeckia hirta
bladder campion	Silene sp.
bladder sedge	Carex intumescens
bloodroot	Sanguinaria canadensis
blue flag iris	Iris versicolor
blue vervain	Verbena hastata
blue-eyed grass	Sisyrinchium angustifolium
bluejoint grass	Calamagrostis canadensis
blue-stemmed goldenrod	Solidago caesia
bluets	Houstonia sp.
blunt spikerush	Elocharis obtusa
blunt-lobed cliff-fern	Woodsia obtusa
boneset	Eupatorium perfoliatum

Common Name	Scientific Name
box elder	Acer negundo
bracken fern	Pteridium aquilinum
broad-leaved cattail	Typha latifolia
broad-leaved dock	Rumex obtusifolius
broom sedge	Carex scoparia
burning bush	Euonymus alatus**
burred	Sparganium americanum
bush honeysuckle	Diervilla lonicera
butter-and-eggs	Linaria vulgaris
buttonbush	Cephalanthus occidentalis
calico aster	Symphyotrichum lateriflorum
Canada mayflower	Maianthemum canadense
Canada rush	Juncus canadensis
Canada St. John's wort	Hypericum canadense
Canada thistle	Cirsium arvense
Canada vew	Taxus canadensis
cardinal flower	Lobelia cardinalis
carrion flower	Smilax herbacea
chestnut oak	Ouercus montana
chickweed	Stellaria media
chokecherry	Prunus virginiana
christmas fern	Polystichum acrostichoides
cinnamon fern	Osmundastrum cinnamomeum
clasning dogbane	Apocynun cannabinum
clearweed	Pilea numila
club moss	Hunerzia sn
coltsfoot	Tussilago farfara***
common blackberry	Rubus allegheniensis
common buckthorn	Rhamnus cathartica**
common burdock	Arctium minus
common chicory	Cichorium intvbus
common cinquefoil	Potentilla simplex
common cocklebur	Xanthium strumarium var. glabratum
common cow-wheat	Melampyrum pratense
common dewberry	Rubus flagellaris
common evening primrose	Oenothera biennis
common greenbrier	Smilax rotundifolia
common jewelweed	Impatiens capensis
common milkweed	Asclepias syriaca
common mugwort	Artemisia vulgaris**
common mullein	Verbascum thapsus
common plantain	Plantago major
common ragweed	Ambrosia artemisiifolia
common reed	Phragmites australis**
common shadbush	Amelanchier arborea
common spikerush	Elocharis palustris
common threesquare	Schoenoplectus pungens
common water plantain	Alisma subcordatum
common woodsorrell	Oxalis montata
cow vetch	Vicia cracca
creeping jenny	Lysimachia nummularia**
creeping spearwort	Ranunculus repens

Common Name	Scientific Name
curled dock	Rumex crispus
dandelion	Taraxacum officinale
davlilv	Hemerocallis sp.
deer berrv	Vaccinium stanimeum
deer-tongue grass	Dichanthelium clandestinum
deptford pink	Dianthus armeria
devil's begger-ticks	Bidens frondosa
Dewey's sedge	Carex dewevana
downy rattlesnake plantain	Goodvera pubescens
early lowbush blueberry	Vaccinium vacillans
early saxifrage	Micranthes virginiensis
eastern cottonwood	Populus deltoides
eastern hemlock	Tsuga canadensis
eastern serviceberry	Amelanchier canadensis
eastern teaberry	Gaultheria procumbens
eastern white pine	Pinus strobus
ebony spleenwort	Asplenium platvneuron
enchanter's nightshade	Cerastium fontanum
European alder	Alnus glutinosa
false baby's breath	Galium mollugo
false dragonhead	Physostegia virginiana
false hellebore	Veratrum viride
false indigo	Amorpha fruticosa
false nettle	Boehmeria cylindrica
false Solomon's seal	Majanthemum racemosum
field penny-cress	Thlasni arvense
field pepperweed	Lenidium campestre
flattened oatgrass	Danthonia compressa
flat-top goldentop	Euthamia graminifolia
flat-top white aster	Doellingeria umbellata
fleabane	Erigeron spn
flowering dogwood	Benthamidia florida
foam flower	Tiarella cordifolia
forget-me-not	Mvosotis scorpioides
fox grape	Vitis labrusca
fringe loosestrife	Lysimachia ciliata
fringed sedge	Carex crinita
garlic mustard	Alliaria petiolata**
gavwings	Polygala paucifolia
giant goldenrod	Solidago gigantica
glossy buckthorn	Frangula alnus**
golden alexanders	Zizua avrea
golden ragwort	Packera aurea
goldenrod	Solidago snn
goldthread	Contis trifolia
grass-leaf flat-topped goldenrod	Euthamia graminifolia
grass of Parnassus	Parnassia glauca
grav hirch	Retula populifolia
gray goldenrod	Solidago nemoralis
great blue lobelia	Lobelia sinhilitica*
great Solomon's seal	Polygonatum hiflorum
green ash	Fraxinus pennsylvanica
0	

Common Name	Scientific Name
green bulrush	Scirpus atrovirens
gill over the ground	Glechoma hederacea
groundnut	Apios americana
ground pine	Lycopodium obscurum
hair-cap moss	Polytrichum juniperinum
hairy bush clover	Lespedeza hirta
hairy Solomon's seal	Polygonatum pubescens
harebell	Campanula rotundifolia
hawkweed	Hieracium caespitosum
hawthorn	Crataegus sp.
hay-scented fern	Dennstaedtia punctilobula
heart-leaved aster	Symphyotrichum cordifolium
hepatica	Hepatica nobilis
highbush blueberry	Vaccinium corymbosum
hobblebush	Viburnum lantanoides
hog peanut	Amphicarpaea bracteata
hop hornbeam	Ostrya virginiana
hop trefoil	Trifolium campestre
Indian cucumber	Medeola virginiana
Indian grass	Sorghastrum nutans
Indian pipe	Monotropa uniflora
Indian tobacco	Lobelia inflata
intermediate spike-sedge	Eleocharis intermedia*
interrupted fern	Osmunda claytoniana
Jack in the pulpit	Arisaema triphyllum
Japanese barberry	Berberis thunbergii**
Japanese honeysuckle	Lonicera japonica**
Japanese knotweed	Fallopia japonica**
Japanese privet	Ligustrum obtusifolium**
Japanese stiltgrass	Microstegium vimineum***
Jerusalum artichoke	Helianthus tuberosus
joe-pye weed	Eutrochium purpureum
jump seed	Persicaria virginiana
leafy spurge	Euphorbia esula**
lesser celandine	Ranunculus ficaria**
lily-of-the-valley	Convallaria majalis
little bluestem grass	Schizachyrium scoparium
lowbush blueberry	Vaccinium angustifolium
mad dog skullcap	Scutellaria lateriflora
maiden-hair fern	Adiantum pedatum
maidenhair spleenwort	Asplenium trichomanes
mannagrass	Glyceria sp.
marginal wood-fern	Dryopteris marginalis
marsh fern	Thelypteris palustris
marsh horsetail	Equisetum palustre
marsh marigold	Caltha palustris
marsh speedwell	Veronica scutellata
marshpepper knotweed	Persicaria hydropiper
mayapple	Podophyllum peltatum
mint	Mentha arvensis
monkey flower	Mimulis ringens
morning glory	Ipomoea purpurea

Common Name	Scientific Name
Morrow's honeysuckle	Lonicera morrowii**
mountain alder	Alnus viridis ssp. crispa*
mountain laurel	Kalmia latifolia
mouse-ear-chickweed	Cerastium fontanum
multiflora rose	Rosa multiflora**
naked-flowered tick trefoil	Hylodesmum nudiflorum
nannyberry	Viburnum lentago
narrowleaf cattail	Typha angustifolia
New England aster	Symphyotrichum novae-angliae
New England sedge	Carex novae-angliae
New York aster	Symphyotrichum novi-belgii
New York fern	Parathelypteris noveboracensis
nodding smartweed	Persicaria lapathifolia
northern bayberry	Morella pensylvanica
northern bugleweed	Lycopus uniflorus
northern catalpa	Catalpa speciosa
northern red oak	Quercus rubra
Norway maple	Acer platanoides**
Norwegian cinquefoil	Potentilla norvgica
Olney's three-square bulrush	Schoenoplectus americanus
orangegrass	Hypericum gentianoides
Oriental bittersweet	Celastrus orbiculatus**
ostrich fern	Matteuccia struthiopteris
ovate spikerush	Eleocharis ovata
oxeye daisy	Leucanthemum vulgare
pale corydalis	Corydalis sempervirens
panicled aster	Symphyotrichum lanceolatum
partridge berry	Mitchella repens
path rush	Juncus tenuis
pearly everlasting	Anaphalis margaritacea
pickerelweed	Pontederia cordata
pin cushion moss	Leucobryum albidum
pin oak	Quercus palustris
pinkweed	Persicaria pensylvanica
pippsissewa	Chimaphila umbellata
pale dogwood	Swida amomum var. schueltzeana
plantain-leaved pussytoes	Antennaria plantaginifolia
plantain-leaved sedge	Carex plantaginea
poison ivy	Toxicodendron radicans
prickly lettuce	Lactuca serriola
princess pine	Dendrolycopodium obscurum
purple chokeberry	Aronia x floribunda
purple cliff brake	Pellaea atropurpurea
purple leaved willow herb	Epilobium ciliatum
purple loosestrife	Lythrum salicaria**
purple osier willow	Salix purpurea $^{\pm}$
purple-flowering raspberry	Rubus odoratus
quaking aspen	Populus tremuloides
Queen Anne's lace	Daucus carota
quillwort	Isotes spp.
rabbit-foot clover	Trifolium arvense
red cedar	Juniperus virginiana

Common Name	Scientific Name
red chokeberry	Aronia arbutifolia
red clover	Trifolium pratense
red fescue	Festuca rubra
red maple	Acer rubrum
red mullberry	Morus alba
red pine	Pinus resinosa
red trillium	Trillium erectum
red-osier dogwood	Swida sericea
reed canary grass	Phalaris arundinacea**
Rhododendron	Rhododendron sp.
rice cutgrass	Leersia orvzoides
river bank grape	Vitis riparia
rock polypody	Polypodium virginianum
rough bedstraw	Galium asprellum
rough-fruited cinquefoil	Potentilla novegica
rough-leaved goldenrod	Solidago patula
round-leaved dogwood	Swida rugosa
rough-stemmed goldenrod	Solidago rugosa
round-lobed hepatica	Anemone americana
roval fern	Osmunda regalis
Russian olive	Elaeagnus angustifolia
Rusty cliff-fern	Woodsia ilvensis
sandbar cherry	Prunus numila var. depressa*
sandbar willow	Salix exigua*
sassafras	Sassafras alhidum
saxifrage	Micranthes sp.
scouring rush	Equisetum hyemale
scrub oak	Quercus ilicifolia
seedbox	Ludwigia alternifolia
self-heal	Prunella vulgaris
sensitive fern	Onoclea sensibilis
shagbark hickory	Carya ovata
shallow sedge	Carex lurida
shaved sedge	Carex tonsa
sheep laurel	Kalmia angustifolia
silky dogwood	Swida amomum
silver maple	Acer saccharinum
silver rod	Solidago bicolor
silver vein	Parthenocissus henryana
skunk cabbage	Symplocarpus foetidus
slender gerardia	Agalinis tenuifolia
slender rattlesnake root	Nabalus altissimus
smartweed	Persicaria sp.
smooth alder	Alnus serrulata
smooth sumac	Rhus glabra
soft rush	Juncus effusus
soft-stem bulrush	Schoenoplectus tabernaemontani
speckled alder	Alnus incana
sphagnum	Sphagnum sp.
spinulose woodfern	Dryopteris carthusiana
spotted joe-pyeweed	Eutrochium maculatum
spotted knapweed	Centaurea maculosa***

Common Name	Scientific Name
spreading dogbane	Aposynum androsaemifolium
squashberry	Viburnum edule
St. John's wort	Hypericum perforatum
staghorn sumac	Rhus hirta
starflower	Lysimachia horealis
steeplebush	Spiraea tomentosa
stiff aster	Lonactis linariifolia
stinging nettle	Urtica dioica
striped maple	Acer pensylvanicum
striped wintergreen	Chimaphila maculata
sugar maple	Acer saccharum
swamp azalea	Rhodoendron viscosum
swamp candles	Lvsimachia terrestris
swamp dewberry	Rubus hispidus
swamp honevsuckle	Lonicera oblongifolia
swamp rose	Rosa palustris
swamp white oak	Ouercus bicolor
sweet fern	z Comptonia peregrina
sweet flag	Acorus calamus
sweetgale	Myrica gale
switchgrass	Panicum vigatum
sycamore	Platanus occidentalis
tall blue lettuce	Lactuca biennis
tall meadow rue	Thalictrum puescens
Tartarian honeysuckle	Lonicera tatarica***
three-leaved blackberry	Rubus parvifolius
three seed mercury	Acalypha rhomboidea
three-way sedge	Dulichium arundinaceum
tick-trefoil	Desmondium glutinosum
tiger lily	Lilium lancifolium
tower mustard	Arabis glabra
Tradescant's aster	Symphyotrichum tradescantii
trident maple	Acer rubrum var. trilobum
trillium	Trillium sp.
turtle head	Chelone glabra
tussock sedge	Carex stricta
twig sedge	Cladium mariscoides
twisted stalk	Streptopus amplexifolis
thyme-leaved speedwell	Veronica serpyllifolia
upland white aster	Oligoneuron album*
violet	Viola sp.
viper's bugloss	Echium vulgare
Virginia creeper	Parthenocissus quinquefolia
virgin's bower	Clematis virginiana
water hemlock	Cicuta maculata
water horehound	Lycopus americanus
water horsetail	Equisetum fluviatile
water parsnip	Sium suave
water pennywort	Hydrocotyle sp.
water purslane	Ludwigia palustris
water-chestnut	Trapa natans
watercress	Nasturtium officinale

Common Name	Scientific Name
white ash	Fraxinus americana
white avens	Geum canadense
white birch	Betula papyrifera
white clover	Trifolium repens
white meadowsweet	Spiraea alba var. latifolia
white oak	Quercus alba
white ricegrass	Leersia virginica
white snakeroot	Ageratina altissima
white sweet clover	Melilotus albus
white vervain	Verbena urticifolia
white wood aster	Eurybia divaricata
whorled loosestrife	Lysimachia quadrifolia
whorled wood aster	Oclemena acuminata
wild columbine	Aquilegia canadinsis
wild madder	Rubia peregrina
wild oats	Avena fatua
wild oats	Uvularia sessilifolia
wild raisin	Viburnum nudum
wild sarsaparilla	Aralia nudicaulis
wild strawberry	Fragaria virginiana
winterberry	Ilex verticillata
wood nettle	Laportea canadensis
woodfern	Dryopteris sp.
woolgrass	Scirpus cyperinus
yarrow	Achillea millefolium
yellow birch	Betula alleghaniensis
yellow iris	Iris pseudacorus**
yellow nutsedge	Cyperus esculentus
yellow woodsorrell	Oxalis stricta

* Denotes RTE

**Denotes Invasive according to MIPAG

***Denotes Likely Invasive according to MIPAG

[±] Denotes Non-native species of interest

STUDY 3.5.1 ATTACHMENTS

> Attachment A to Study No. 3.5.1. Figure 4.2.2-1 Submerged Aquatic Vegetation Mapping

Path: W:\gis\studies\3_5_1\maps\Study_3_5_1_SAV_Report_Figures.mxd

> Attachment B to Study No. 3.5.1. Rainbow Beach and North Bank Survey Transects

Rainbow Beach and North Bank Survey Transects

Point_Id	Northing	Easting	Elevation	Time_
bench.rb	2944832.45710000000	362603.96200000000	109.6870000000	11/26/2014
bench.rb.1	2944832.47770000000	362604.23860000000	109.93620000000	11/26/2014
bench.rb.2	2944832.4761000000	362604.2031000000	110.02880000000	11/26/2014
nb.bench.1	2945482.5943000000	360853.13460000000	113.89250000000	11/26/2014
nbt1.1	2945477.12550000000	360896.3236000000	113.27100000000	11/26/2014
nbt1.2	2945498.88490000000	360898.8902000000	100.91730000000	11/26/2014
nbt1.3	2945493.25000000000	360898.41550000000	102.30840000000	11/26/2014
nbt1.4	2945485.90710000000	360897.02410000000	104.97330000000	11/26/2014
nbt1.5	2945484.3680000000	360898.03950000000	108.63710000000	11/26/2014
nbt1.6	2945482.47560000000	360897.63270000000	108.93920000000	11/26/2014
nbt1.7	2945479.1103000000	360897.48110000000	111.92980000000	11/26/2014
nbt2.1	2945489.0281000000	360745.87720000000	114.9013000000	11/26/2014
nbt2.2	2945494.39210000000	360746.32520000000	111.24960000000	11/26/2014
nbt2.3	2945500.77790000000	360746.51880000000	107.13560000000	11/26/2014
nbt2.4	2945506.03270000000	360748.3103000000	103.54110000000	11/26/2014
nbt2.5	2945507.18830000000	360748.80570000000	102.55290000000	11/26/2014
nbt2.6	2945508.8330000000	360749.67330000000	102.24160000000	11/26/2014
nbt2.7	2945514.76840000000	360750.87300000000	100.83580000000	11/26/2014
nbt3.1	2945529.9361000000	360592.46530000000	114.73220000000	11/26/2014
nbt3.2	2945530.64920000000	360592.95530000000	113.25990000000	11/26/2014
nbt3.3	2945535.7874000000	360595.98440000000	109.45560000000	11/26/2014
nbt3.4	2945535.79870000000	360595.96290000000	109.43380000000	11/26/2014
nbt3.5	2945538.7454000000	360598.33230000000	104.98320000000	11/26/2014
nbt3.6	2945540.9438000000	360598.7049000000	103.52100000000	11/26/2014
nbt3.7	2945546.2735000000	360601.07940000000	102.15080000000	11/26/2014
nbt3.8	2945551.1943000000	360603.47330000000	101.18760000000	11/26/2014
nbt4.1	2945602.02720000000	360382.03350000000	115.28560000000	11/26/2014
nbt4.2	2945603.1335000000	360382.32370000000	113.74440000000	11/26/2014
nbt4.3	2945606.49870000000	360384.07470000000	109.87460000000	11/26/2014
nbt4.4	2945608.36850000000	360383.72420000000	106.09240000000	11/26/2014
nbt4.5	2945611.48900000000	360386.37830000000	103.44550000000	11/26/2014
nbt4.6	2945615.61690000000	360388.5336000000	102.33660000000	11/26/2014
nbt4.7	2945620.25940000000	360390.32320000000	101.10830000000	11/26/2014
rb.bench	2944832.4418000000	362604.28150000000	110.22930000000	11/26/2014
rb11.3	2944065.4075000000	362665.35690000000	103.22210000000	11/26/2014
rb11.4	2944069.20420000000	362655.54100000000	103.69120000000	11/26/2014
rb11.5	2944069.5487000000	362649.1894000000	104.14080000000	11/26/2014
rb11.6	2944070.40660000000	362640.64480000000	105.77950000000	11/26/2014
rb11.7	2944070.68820000000	362636.93350000000	106.55020000000	11/26/2014
rb11.8	2944071.16530000000	362627.62310000000	108.49770000000	11/26/2014
rb11.9	2944071.7204000000	362622.52880000000	108.29850000000	11/26/2014
rb11.10	2944072.3204000000	362617.27060000000	108.46660000000	11/26/2014
rb11.11	2944074.19610000000	362613.99820000000	108.8081000000	11/26/2014
rb11.12	2944076.78190000000	362607.4430000000	110.34100000000	11/26/2014
rb12.1	2943946.22370000000	362686.99980000000	101.78500000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
 rb12.2	2943951.42440000000	362673.03770000000	102.76380000000	_ 11/26/2014
rb12.3	2943954.8724000000	362656.95110000000	102.96210000000	11/26/2014
rb12.4	2943958.90970000000	362642.0031000000	103.45100000000	11/26/2014
rb12.5	2943962.52990000000	362626.17950000000	104.51100000000	11/26/2014
rb12.6	2943965.28420000000	362612.60670000000	105.36860000000	11/26/2014
rb12.7	2943968.14130000000	362603.63090000000	106.68890000000	11/26/2014
rb12.8	2943973.13630000000	362594.11590000000	107.82550000000	11/26/2014
rb12.9	2943975.9240000000	362586.43530000000	108.82450000000	11/26/2014
rbt1.1	2945064.9045000000	362570.18690000000	101.33840000000	11/26/2014
rbt1.2	2945061.84580000000	362564.88230000000	102.5200000000	11/26/2014
rbt1.3	2945061.02440000000	362564.41980000000	103.66760000000	11/26/2014
rbt1.4	2945056.51530000000	362557.74190000000	103.36120000000	11/26/2014
rbt1.5	2945053.9405000000	362553.51980000000	106.80210000000	11/26/2014
rbt1.6	2945050.01220000000	362550.29930000000	107.12660000000	11/26/2014
rbt1.7	2945044.83560000000	362548.81710000000	115.46080000000	11/26/2014
rbt2.2	2944974.56290000000	362626.86640000000	101.64530000000	11/26/2014
rbt2.3	2944969.9460000000	362617.25840000000	102.43580000000	11/26/2014
rbt2.4	2944965.7900000000	362609.87880000000	103.28460000000	11/26/2014
rbt2.5	2944961.69240000000	362601.80120000000	104.52570000000	11/26/2014
rbt2.6	2944958.72230000000	362593.8310000000	106.49020000000	11/26/2014
rbt2.7	2944957.98690000000	362590.55150000000	107.02630000000	11/26/2014
rbt2.8	2944978.03810000000	362632.66390000000	101.49140000000	11/26/2014
rbt2.9	2944947.52720000000	362587.30380000000	109.98770000000	11/26/2014
rbt2.10	2944944.47270000000	362579.81600000000	110.52580000000	11/26/2014
rbt2.11	2944952.1091000000	362594.57120000000	106.6290000000	11/26/2014
rbt3.1	2944882.70770000000	362671.46970000000	101.63730000000	11/26/2014
rbt3.2	2944876.82740000000	362658.69400000000	102.4488000000	11/26/2014
rbt3.3	2944871.85040000000	362647.32620000000	103.2950000000	11/26/2014
rbt3.4	2944868.1207000000	362637.0632000000	104.45290000000	11/26/2014
rbt3.5	2944864.5938000000	362627.87520000000	105.85510000000	11/26/2014
rbt3.6	2944861.83590000000	362620.4714000000	107.50760000000	11/26/2014
rbt3.7	2944857.46260000000	362613.85920000000	109.16510000000	11/26/2014
rbt3.8	2944853.3982000000	362604.5683000000	115.89510000000	11/26/2014
rbt4.1	2944787.9687000000	362717.87570000000	101.72770000000	11/26/2014
rbt4.2	2944784.3298000000	362705.5056000000	102.26470000000	11/26/2014
rbt4.3	2944779.48080000000	362686.39110000000	102.72570000000	11/26/2014
rbt4.4	2944776.4314000000	362673.2329000000	103.43840000000	11/26/2014
rbt4.5	2944774.01070000000	362659.43990000000	105.42830000000	11/26/2014
rbt4.6	2944773.22100000000	362654.13010000000	105.75730000000	11/26/2014
rbt4.7	2944772.55990000000	362651.29190000000	106.92820000000	11/26/2014
rbt4.8	2944769.66710000000	362644.28640000000	107.82660000000	11/26/2014
rbt4.9	2944767.7032000000	362636.42660000000	108.30550000000	11/26/2014
rbt5.1	2944685.5049000000	362732.4117000000	101.74240000000	11/26/2014
rbt5.2	2944684.3146000000	362716.79350000000	102.6181000000	11/26/2014
rbt5.3	2944680.7843000000	362702.13310000000	102.94500000000	11/26/2014
rbt5.4	2944676.93330000000	362686.34470000000	103.48050000000	11/26/2014

Point Id	Northing	Easting	Elevation	Time
 rbt5.5	2944675.2302000000	362677.93180000000	104.17570000000	
rbt5.6	2944674.5745000000	362663.53090000000	105.80740000000	11/26/2014
rbt5.7	2944673.2081000000	362660.02340000000	105.59620000000	11/26/2014
rbt5.8	2944671.47280000000	362648.8202000000	106.67480000000	11/26/2014
rbt5.9	2944670.64230000000	362638.4723000000	107.62450000000	11/26/2014
rbt6.1	2944590.6740000000	362748.9678000000	101.71370000000	11/26/2014
rbt6.2	2944585.14940000000	362731.8542000000	102.51830000000	11/26/2014
rbt6.3	2944581.69180000000	362721.04580000000	102.8004000000	11/26/2014
rbt6.4	2944579.80440000000	362715.75670000000	102.84540000000	11/26/2014
rbt6.5	2944575.06860000000	362697.0739000000	103.51780000000	11/26/2014
rbt6.6	2944574.99970000000	362694.33890000000	103.20240000000	11/26/2014
rbt6.7	2944572.3392000000	362685.2936000000	103.67210000000	11/26/2014
rbt6.8	2944569.8470000000	362674.5776000000	104.76540000000	11/26/2014
rbt6.9	2944568.21310000000	362666.6135000000	105.77330000000	11/26/2014
rbt6.10	2944567.78240000000	362653.4373000000	108.00920000000	11/26/2014
rbt6.11	2944566.19840000000	362645.6791000000	108.34350000000	11/26/2014
rbt7.1	2944483.3045000000	362795.6991000000	101.69570000000	11/26/2014
rbt7.2	2944480.5349000000	362778.5584000000	101.80990000000	11/26/2014
rbt7.3	2944480.0928000000	362753.39890000000	102.31390000000	11/26/2014
rbt7.4	2944478.41730000000	362730.36630000000	102.70920000000	11/26/2014
rbt7.5	2944475.55490000000	362710.96530000000	103.19080000000	11/26/2014
rbt7.6	2944472.94920000000	362699.8665000000	103.62980000000	11/26/2014
rbt7.7	2944472.30880000000	362687.7032000000	104.86520000000	11/26/2014
rbt7.8	2944470.82140000000	362677.83330000000	105.87820000000	11/26/2014
rbt7.9	2944469.19490000000	362663.7387000000	107.10090000000	11/26/2014
rbt8.1	2944375.67990000000	362817.7582000000	101.73730000000	11/26/2014
rbt8.2	2944375.56370000000	362791.5949000000	102.23230000000	11/26/2014
rbt8.3	2944376.2218000000	362773.2748000000	102.74330000000	11/26/2014
rbt8.4	2944376.64670000000	362751.9305000000	102.71210000000	11/26/2014
rbt8.5	2944375.8923000000	362729.3290000000	102.85620000000	11/26/2014
rbt8.6	2944374.53270000000	362711.83110000000	103.02070000000	11/26/2014
rbt8.7	2944374.9218000000	362707.0623000000	102.71210000000	11/26/2014
rbt8.8	2944375.13610000000	362698.1013000000	103.41830000000	11/26/2014
rbt8.9	2944375.14610000000	362689.2138000000	104.19050000000	11/26/2014
rbt8.10	2944375.10000000000	362682.4123000000	105.59450000000	11/26/2014
rbt9.1	2944269.5145000000	362841.7204000000	101.76230000000	11/26/2014
rbt9.2	2944271.85970000000	362830.1133000000	101.55450000000	11/26/2014
rbt9.3	2944269.6075000000	362812.4823000000	102.37580000000	11/26/2014
rbt9.4	2944268.5160000000	362792.0925000000	102.50110000000	11/26/2014
rbt9.5	2944268.51600000000	362788.60280000000	102.2850000000	11/26/2014
rbt9.6	2944269.83210000000	362769.63630000000	102.5983000000	11/26/2014
rbt9.7	2944271.8837000000	362746.2728000000	102.56240000000	11/26/2014
rbt9.8	2944274.2119000000	362725.8810000000	102.69120000000	11/26/2014
rbt9.9	2944275.6379000000	362708.02110000000	102.8792000000	11/26/2014
rbt9.10	2944275.25830000000	362692.71850000000	103.4247000000	11/26/2014
rbt9.11	2944276.91100000000	362679.09870000000	104.43750000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
rbt9.12	2944280.4824000000	362670.55840000000	105.08480000000	11/26/2014
rbt9.13	2944275.0430000000	362656.58880000000	107.31530000000	11/26/2014
rbt10.1	2944158.7043000000	362741.84510000000	101.84880000000	11/26/2014
rbt10.2	2944160.99630000000	362727.98130000000	102.03140000000	11/26/2014
rbt10.3	2944162.83580000000	362713.34170000000	102.35470000000	11/26/2014
rbt10.4	2944165.50960000000	362700.35790000000	102.61020000000	11/26/2014
rbt10.5	2944167.81310000000	362692.5780000000	102.44830000000	11/26/2014
rbt10.6	2944169.46510000000	362682.1549000000	102.65170000000	11/26/2014
rbt10.7	2944169.41810000000	362678.29840000000	102.67670000000	11/26/2014
rbt10.8	2944170.44990000000	362667.8983000000	104.66370000000	11/26/2014
rbt10.9	2944169.71000000000	362660.20680000000	107.03740000000	11/26/2014
rbt10.10	2944167.6501000000	362656.6621000000	106.28050000000	11/26/2014
rbt10.11	2944167.51680000000	362650.2812000000	107.85900000000	11/26/2014
rbt10.12	2944167.21420000000	362648.11610000000	108.04150000000	11/26/2014
rbt10.13	2944167.6036000000	362644.0858000000	109.29660000000	11/26/2014
rbt10.14	2944169.68710000000	362639.2530000000	109.64280000000	11/26/2014
rbt10.15	2944171.4410000000	362634.9730000000	108.94710000000	11/26/2014
rbt10.16	2944175.22280000000	362626.9354000000	110.82510000000	11/26/2014
rbt10.17	2944173.41220000000	362621.2876000000	111.39820000000	11/26/2014
rbt11.1	2944057.7698000000	362694.6110000000	101.80180000000	11/26/2014
rbt11.2	2944061.27590000000	362679.6716000000	102.45390000000	11/26/2014
rbt13.1	2943867.87990000000	362626.87970000000	102.07620000000	11/26/2014
rbt13.2	2943873.75750000000	362613.73440000000	102.96240000000	11/26/2014
rbt13.3	2943880.48950000000	362599.27590000000	103.71330000000	11/26/2014
rbt13.4	2943884.59500000000	362591.27680000000	103.74250000000	11/26/2014
rbt13.5	2943889.4067000000	362582.72210000000	104.26950000000	11/26/2014
rbt13.6	2943893.75510000000	362572.8624000000	106.71310000000	11/26/2014
rbt14.1	2943771.31390000000	362584.0596000000	101.75640000000	11/26/2014
rbt14.2	2943779.34570000000	362572.37370000000	102.58960000000	11/26/2014
rbt14.3	2943785.9043000000	362560.5408000000	103.51070000000	11/26/2014
rbt14.4	2943793.34210000000	362543.7732000000	103.90550000000	11/26/2014
rbt14.5	2943795.00230000000	362538.7362000000	105.12650000000	11/26/2014
rbt14.6	2943796.02690000000	362537.3370000000	104.62500000000	11/26/2014
rbt14.7	2943799.5726000000	362529.0773000000	104.89240000000	11/26/2014
rbt14.8	2943802.08530000000	362522.9743000000	106.61510000000	11/26/2014
rbt14.9	2943803.8693000000	362517.76560000000	106.40290000000	11/26/2014
rbt14.10	2943806.76870000000	362506.87730000000	106.49880000000	11/26/2014
rbt14.11	2943805.75790000000	362502.95190000000	108.35200000000	11/26/2014
rbt15.1	2943675.9490000000	362535.36060000000	101.93990000000	11/26/2014
rbt15.2	2943682.8617000000	362522.8602000000	102.81730000000	11/26/2014
rbt15.3	2943691.06410000000	362507.92840000000	103.63050000000	11/26/2014
rbt15.4	2943702.77260000000	362487.4803000000	105.03090000000	11/26/2014
rbt15.5	2943710.84650000000	362477.32690000000	105.34680000000	11/26/2014
rbt15.6	2943717.03730000000	362467.78930000000	105.93300000000	11/26/2014
rbt15.7	2943722.13150000000	362462.83380000000	106.16970000000	11/26/2014
rbt15.8	2943726.5005000000	362458.67190000000	107.54630000000	11/26/2014

Point Id	Northing	Easting	Elevation	Time
 rbt15.9	2943729.08270000000	362456.32970000000	107.63340000000	
rbt15.10	2943730.7413000000	362452.5131000000	108.24480000000	11/26/2014
rbt16.1	2943585.3860000000	362479.3885000000	102.02380000000	11/26/2014
rbt16.2	2943588.8338000000	362474.8151000000	102.59830000000	11/26/2014
rbt16.3	2943599.31710000000	362461.98330000000	103.28440000000	11/26/2014
rbt16.4	2943605.08340000000	362455.9562000000	103.96450000000	11/26/2014
rbt16.5	2943616.29570000000	362442.9818000000	104.52340000000	11/26/2014
rbt16.6	2943626.57340000000	362431.10660000000	104.8780000000	11/26/2014
rbt16.7	2943641.61900000000	362420.94310000000	105.37160000000	11/26/2014
rbt16.8	2943649.40570000000	362415.82230000000	106.34540000000	11/26/2014
rbt16.9	2943655.85460000000	362409.0826000000	106.89240000000	11/26/2014
rbt16.10	2943657.98240000000	362407.4435000000	106.90590000000	11/26/2014
rbt16.11	2943659.5593000000	362404.44770000000	107.32870000000	11/26/2014
rbt16.12	2943665.10680000000	362395.4582000000	107.89500000000	11/26/2014
rbt17.1	2943511.12550000000	362410.57740000000	101.89130000000	11/26/2014
rbt17.2	2943521.59440000000	362400.8720000000	102.92800000000	11/26/2014
rbt17.3	2943528.47770000000	362393.6635000000	103.17060000000	11/26/2014
rbt17.4	2943531.67550000000	362389.21680000000	103.80260000000	11/26/2014
rbt17.5	2943535.82510000000	362384.8508000000	103.95720000000	11/26/2014
rbt17.6	2943543.3432000000	362376.41880000000	104.33970000000	11/26/2014
rbt17.7	2943553.53890000000	362364.51510000000	104.62630000000	11/26/2014
rbt17.8	2943560.58850000000	362357.9219000000	104.83260000000	11/26/2014
rbt17.9	2943567.99660000000	362350.87840000000	105.63050000000	11/26/2014
rbt17.10	2943570.75010000000	362348.5095000000	105.40760000000	11/26/2014
rbt17.11	2943573.97670000000	362346.5260000000	105.63630000000	11/26/2014
rbt17.12	2943576.91000000000	362343.39690000000	106.25320000000	11/26/2014
rbt17.13	2943579.49240000000	362339.9145000000	106.02650000000	11/26/2014
rbt17.14	2943584.2046000000	362335.54550000000	106.87690000000	11/26/2014
rbt17.15	2943593.19580000000	362330.0451000000	107.32480000000	11/26/2014
rbt18.1	2943454.8988000000	362314.2967000000	101.88890000000	11/26/2014
rbt18.2	2943458.7295000000	362311.0321000000	102.6130000000	11/26/2014
rbt18.3	2943466.9708000000	362303.14710000000	102.82110000000	11/26/2014
rbt18.4	2943471.8445000000	362298.7594000000	103.20510000000	11/26/2014
rbt18.5	2943476.6700000000	362294.9292000000	103.8378000000	11/26/2014
rbt18.6	2943485.4506000000	362287.3843000000	104.51820000000	11/26/2014
rbt18.7	2943492.15640000000	362281.8259000000	104.71340000000	11/26/2014
rbt18.8	2943501.43620000000	362275.4221000000	105.50720000000	11/26/2014
rbt18.9	2943508.0723000000	362269.67110000000	106.2678000000	11/26/2014
rbt18.10	2943514.4081000000	362264.9950000000	106.52030000000	11/26/2014
rbt19.1	2943392.21420000000	362235.4724000000	101.93740000000	11/26/2014
rbt19.2	2943398.2043000000	362232.10550000000	102.24310000000	11/26/2014
rbt19.3	2943399.9105000000	362231.01550000000	102.50220000000	11/26/2014
rbt19.4	2943410.77120000000	362223.2675000000	102.74810000000	11/26/2014
rbt19.5	2943410.98130000000	362223.17220000000	102.78370000000	11/26/2014
rbt19.6	2943421.26980000000	362217.5067000000	103.49650000000	11/26/2014
rbt19.7	2943425.6448000000	362215.78800000000	103.89090000000	11/26/2014

Point Id	Northing	Easting	Elevation	Time
 rbt19.8	2943428.63440000000	362215.11080000000	103.85030000000	
rbt19.9	2943436.98140000000	362210.21110000000	105.43550000000	11/26/2014
rbt19.10	2943442.1647000000	362205.73120000000	106.50960000000	11/26/2014
rbt19.11	2943448.5803000000	362201.53190000000	106.56190000000	11/26/2014
rbt19.12	2943453.1502000000	362197.7946000000	106.19320000000	11/26/2014
rbt19.13	2943459.1670000000	362193.9856000000	105.85340000000	11/26/2014
rbt19.14	2943465.6928000000	362186.7380000000	106.27050000000	11/26/2014
rbt20.1	2943348.10060000000	362151.24390000000	101.99590000000	11/26/2014
rbt20.2	2943348.18280000000	362151.27650000000	101.96540000000	11/26/2014
rbt20.3	2943348.02790000000	362151.12970000000	101.84000000000	11/26/2014
rbt20.4	2943352.8301000000	362148.14990000000	102.53470000000	11/26/2014
rbt20.5	2943359.46660000000	362141.29810000000	102.87170000000	11/26/2014
rbt20.6	2943366.04460000000	362134.78460000000	102.91240000000	11/26/2014
rbt20.7	2943371.08980000000	362130.12930000000	103.19410000000	11/26/2014
rbt20.8	2943375.22550000000	362126.7021000000	103.71770000000	11/26/2014
rbt20.9	2943383.26970000000	362123.67380000000	104.33640000000	11/26/2014
rbt20.10	2943393.4835000000	362116.57360000000	104.61060000000	11/26/2014
rbt21.1	2943306.39130000000	362067.5843000000	101.97980000000	11/26/2014
rbt21.2	2943311.55970000000	362064.21070000000	102.5043000000	11/26/2014
rbt21.3	2943319.59050000000	362060.6510000000	102.98180000000	11/26/2014
rbt21.4	2943324.8396000000	362056.48110000000	103.10250000000	11/26/2014
rbt21.5	2943331.57030000000	362054.76390000000	103.8904000000	11/26/2014
rbt21.6	2943339.85470000000	362051.36270000000	104.69490000000	11/26/2014
rbt21.7	2943348.26700000000	362045.6913000000	104.02890000000	11/26/2014
rbt22.1	2943262.18620000000	361981.6072000000	101.90900000000	11/26/2014
rbt22.2	2943267.90900000000	361977.4083000000	102.70060000000	11/26/2014
rbt22.3	2943276.43560000000	361973.04830000000	103.25390000000	11/26/2014
rbt22.4	2943279.6123000000	361970.9901000000	103.82400000000	11/26/2014
rbt22.5	2943287.49000000000	361966.30290000000	104.07350000000	11/26/2014
rbt22.6	2943291.83970000000	361962.44330000000	103.70680000000	11/26/2014
rbt23.1	2943221.31180000000	361882.48770000000	102.03320000000	11/26/2014
rbt23.2	2943226.1876000000	361880.7602000000	102.55130000000	11/26/2014
rbt23.3	2943230.55300000000	361877.96120000000	103.07230000000	11/26/2014
rbt23.4	2943241.3418000000	361870.33660000000	103.30030000000	11/26/2014
rbt23.5	2943248.17970000000	361867.90120000000	103.2080000000	11/26/2014
rbt24.1	2943186.09330000000	361773.61870000000	101.95720000000	11/26/2014
rbt24.2	2943195.5604000000	361767.15970000000	103.12560000000	11/26/2014
testtopo.1	2945434.73990000000	361294.3943000000	112.54900000000	11/26/2014
topo.1	2943909.4806000000	362649.2048000000	102.01250000000	11/26/2014
topo.2	2943936.4887000000	362672.46320000000	101.93300000000	11/26/2014
topo.3	2943960.0840000000	362699.35890000000	101.89190000000	11/26/2014
topo.4	2944000.4491000000	362685.7046000000	101.94270000000	11/26/2014
topo.5	2944027.7469000000	362674.09610000000	102.0097000000	11/26/2014
topo.6	2944051.0074000000	362677.14470000000	101.99750000000	11/26/2014
topo.7	2944061.42410000000	362697.14700000000	102.05950000000	11/26/2014
topo.8	2944092.36550000000	362714.44710000000	102.1230000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
topo.9	2944118.23720000000	362737.1867000000	101.94090000000	11/26/2014
topo.10	2944174.1227000000	362730.3200000000	101.68880000000	11/26/2014
topo.11	2944192.7604000000	362711.94250000000	101.82470000000	11/26/2014
topo.12	2944229.3086000000	362745.8291000000	101.78230000000	11/26/2014

Attachment C to Study No. 3.5.1. RTE Plant RTK Survey Data collected in 2015

This is sensitive information and has been filed as Privileged

STUDY 3.6.1 ATTACHMENTS

Attachment A to Study 3.6.1. Table 4.1.3-1: Estimated Use of Surveyed Recreation Sites by Season¹ Revision (May 2016)

Despection Site	Estimated Annual	Estimated	Estimated	Estimated	Estimated
Recreation Site	Use (2014)	Winter Use	Spring Use	Summer Use	Fall Use
Governor Hunt Boat Launch/Picnic Area	1,812	13%	11%	67%	9%
Pauchaug WMA	1,005	15%	0%	23%	62%
Pauchaug Boat Launch	9,630	1%	7%	68%	23%
Bennett Meadow WMA	3,729	2%	14%	40%	44%
Munn's Ferry Boat Camping Recreation Area	1,716	0%	0%	84%	16%
Boat Tour and Riverview Picnic Area	13,651	17%	23%	39%	21%
Northfield Mountain Tour and Trail Center	20,024	24%	12%	33%	31%
Cabot Camp Access Area	5,326	4%	10%	62%	24%
Barton Cove Nature Area	7,842	15%	19%	45%	21%
Barton Cove Campground	2,963	0%	5%	92%	3%
Barton Cove Canoe and Kayak Rental Area	4,455	2%	0%	98%	0%
State Boat Launch	15,126	1%	2%	74%	23%
Canalside Trail Bike Path	6,362	1%	13%	54%	31%
Gatehouse Fishway Viewing Area ²	27,345	7%	28%	46%	20%
Turners Falls Branch Canal Area/Turners Falls Station	1 264	270/	2004	2004	240/
No. 1 Fishing Access	1,204	2770	2970	2070	2470
Cabot Woods Fishing Access	18,053	17%	19%	43%	21%
Poplar Street Access Site	1,877	14%	5%	56%	25%
Rose Ledge Climbing Area Parking	1,790	2%	27%	54%	17%
Farley Ledge Climbing Area—Wells Street Parking	2,390	7%	51%	29%	13%
Farley Ledge Climbing Area—Route 2 Parking	6,232	4%	22%	48%	25%
Total Use of the above Recreation Sites	152,592	10%	16%	51%	23%

¹ Percentages of estimated use by season at each recreation site may not sum to 100% due to rounding. ² Estimated Annual Use includes visitors to the Gatehouse Fishway Viewing Area, the associated picnic area, and the adjacent bike path.

								ne	ision (iiiuj	2010)										
Recreation Site	Walk/ Hike/ Jogging	Motor Boating	Fishing	Ride Bikes	Picnicking	Climbing	Non- motor boating	Fishway Viewing	Cross- country Ski	Camping	Riverboat	Sight see	Hunt	Birding	Ice Fish	Ride Horses	Snow Shoe	Whitewater boat (Bypass only)	Ice Skate/ Boat	Unidentified Recreation Activity
Governor Hunt Boat																		• /		
Launch/Picnic Area	0%	53%	12%	0%	0%	0%	15%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	19%
Pauchaug WMA	32%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	0%	23%
Pauchaug Boat Launch	4%	49%	12%	0%	1%	0%	10%	0%	0%	0%	0%	2%	2%	0%	0%	0%	0%	0%	0%	20%
Bennett Meadow WMA	41%	0%	1%	0%	1%	0%	1%	0%	0%	0%	0%	4%	25%	0%	0%	0%	0%	0%	0%	27%
Munn's Ferry Boat Camping Recreation Area	0%	39%	0%	0%	5%	0%	9%	0%	0%	30%	0%	0%	0%	0%	0%	0%	0%	0%	0%	18%
Boat Tour and Riverview																				
Picnic Area	29%	3%	2%	2%	18%	0%	1%	0%	0%	0%	20%	1%	0%	0%	0%	0%	0%	0%	0%	24%
Northfield Mountain Tour and Trail Center	49%	0%	0%	0%	0%	0%	0%	0%	17%	0%	0%	1%	0%	0%	0%	3%	1%	0%	0%	29%
Cabot Camp Access Area	19%	1%	26%	2%	1%	0%	1%	0%	0%	0%	0%	8%	0%	0%	0%	0%	0%	3%	0%	39%
Barton Cove Nature Area	31%	0%	23%	6%	5%	0%	4%	0%	0%	0%	0%	1%	0%	1%	9%	0%	0%	0%	1%	19%
Barton Cove Campground	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Barton Cove Canoe and		-		-	-			-				-	-	-	-		-	-	-	
Kayak Rental Area	0%	8%	4%	0%	12%	0%	60%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	14%
State Boat Launch	1%	74%	2%	0%	1%	0%	11%	0%	0%	0%	0%	1%	0%	2%	0%	0%	0%	0%	0%	8%
Canalside Trail Bike Path	41%	0%	0%	55%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%
Gatehouse Fishway Viewing Area ²	36%	0%	6%	8%	14%	0%	0%	19%	0%	0%	0%	1%	0%	1%	0%	0%	0%	0%	0%	15%
Turners Falls Branch Canal/Station No. 1 Fishing	269/	09/	210/	210/	00/	00/	00/	00/	140/	09/	00/	00/	00/	00/	09/	09/	00/	00/	00/	100/
Cabat Woods Fishing Access	2070 500/	0%	<u> </u>	2170	20/	0%	0%	0%	00/	0%	0%	10/0	070	10/0	070	070	070	070	070	1970
Poplar Street Access Site	230/0	0%	1170 /10/	20/2	0%	0%	21%	0%	0%	0%	0%	1 /0	0%	170	070	070	0%	10/0	0%	1//0
Pose Ledge Climbing Area	2370	070	41/0	370	070	070	2170	070	070	070	070	070	070	070	070	070	070	1 /0	070	11/0
Parking	19%	0%	0%	0%	0%	75%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	4%
Farley Ledge Climbing Area—Wells Street Parking	71%	0%	0%	0%	0%	25%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Farley Ledge Climbing Area—Route 2 Parking	20%	0%	0%	0%	0%	75%	0%	0%	2%	0%	0%	1%	0%	0%	0%	1%	1%	0%	0%	1%
Total Project-Wide Use of the above Sites.	30%	12%	7%	6%	5%	4%	4%	3%	3%	2%	2%	1%	1%	1%	>1%	>1%	>1%	>1%	>1%	17%

Attachment A to Study No. 3.6.1 Table 4.1.3-2: Percent of Recreation Use by Activity at Each Site Revision (May 2016)

² Use includes visitors utilizing the Visitor Center and the associated picnic area, which includes a portion of the Canalside Trail Bike Path.

Recreation Site	Recreation Days	Percent Capacity Utilized
Governor Hunt Boat Launch/Picnic Area	1,812	50%
Pauchaug WMA	1,005	1%
Pauchaug Boat Launch	9,630	20%
Bennett Meadow WMA	3,729	10%
Munn's Ferry Boat Camping Recreation Area	1,716	40%
Boat Tour and Riverview Picnic Area	13,651	10%
Northfield Mountain Tour and Trail Center	20,024	10%
Cabot Camp Access Area	5,326	15%
Barton Cove Nature Area	7,842	20%
Barton Cove Campground	2,963	40%
Barton Cove Canoe and Kayak Rental Area	4,455	25%
State Boat Launch	15,126	65%
Canalside Trail Bike Path	6,362	N/A
Gatehouse Fishway Viewing Area	27,345	25%
Turners Falls Branch Canal/Station No. 1 Fishing		
Access	1,264	1%
Cabot Woods Fishing Access	18,053	25%
Poplar Street Access Site	1,877	10%
Rose Ledge Climbing Area Parking	1,790	60%
Farley Ledge Climbing Area—Wells Street Parking	2,390	30%
Farley Ledge Climbing Area—Route 2 Parking	6,232	60%
Annual Total	152,592	

Attachment A to Study No. 3.6.1 Table 4.1.3-3: Recreation Site Capacity Utilization by Site Revision (May 2016)

Attachment A to Study No. 3.6.1 Table 4.1.2-1: Recreation Use by Activity Type based on Spot Counts and Calibration Counts in 2014 Revision May 2016

Recreation Activity	Estimated Use (Recreation Days)	Percent (%) of Recreation Use
Walking/Hiking/Jogging	46,476	30%
Motor boating	18,470	12%
Fishing	9,960	7%
Bike Riding	8,643	6%
Picnicking	8,374	5%
Rock Climbing	6,703	4%
Non-motor boating	6,625	4%
Fishway Viewing	5,061	3%
Cross-country Skiing	3,960	3%
Camping	3,478	2%
Riverboat touring	2,733	2%
Sightseeing	1,746	1%
Hunting	1,569	1%
Birding	836	1%
Ice Fishing	761	1%
Horseback Riding	736	<1%
Snowshoeing	188	<1%
Whitewater boating	171	<1%
Ice skating/ Ice boat	97	<1%
Unidentified Activity	26,005	17%
Total	152,592	100%

Study No. 3.6.1 Attachments -Page 4

Desusation Astinity	2014 Use	2060 Projected Use	Percent (%) of
Recreation Activity	(Recreation Days)	(Recreation Days)	
walking/Hiking/Jogging	46,476	53,218	30%
Motor Boating	18,470	22,158	13%
Fishing	9,960	10,184	6%
Bike Riding	8,643	9,897	6%
Picnicking	8,374	9,017	5%
Rock Climbing	6,703	8,182	5%
Non-motor Boating	6,625	7,165	4%
Interpretive—Fishway			
Viewing	5,061	5,756	3%
Cross-country Skiing	3,960	5,335	3%
Camping	3,478	3,745	2%
Riverboat Touring	2,733	2,966	2%
Sightseeing	1,746	1,895	1%
Hunting	1,569	1,314	1%
Birding	836	908	1%
Ice Fishing	761	778	0%
Horseback Riding	736	908	1%
Snowshoeing	188	253	0%
Whitewater boating	171	185	0%
Ice skating/ Ice boat	97	132	0%
Unidentified Recreation			
Activity	26,005	30,119	17%
Projects Total	152,592	175,503	

Attachment A to Study No. 3.6.1 Table 4.7.2-4: Projected Recreation Use by Activity Type, 2060 Revision (May 2016)

> Attachment A to Study 3.6.1 (Redline Version). Table 4.1.3-1: Estimated Use of Surveyed Recreation Sites by Season¹

Filed Date: 05/31/2016

Attachment A to Study No. 3.6.1 Table 4.1.3-1: Estimated Use of Surveyed Recreation Sites by Season¹ **Revision May 2016**

Recreation Site	Estimated Annual Use (2014)	Estimated Winter Use	Estimated Spring Use	Estimated Summer Use	Estimated Fall Use
Governor Hunt Boat Launch/Picnic Area	1,812	13%	11%	67%	9%
Pauchaug WMA	1,005	15%	0%	23%	62%
Pauchaug Boat Launch	9,630	1%	7%	68%	23%
Bennett Meadow WMA	3,729	2%	14%	40%	44%
Munn's Ferry Boat Camping Recreation Area	1,716	0%	0%	84%	16%
Boat Tour and Riverview Picnic Area	13,651	17%	23%	39%	21%
Northfield Mountain Tour and Trail Center	20,024	24%	12%	33%	31%
Cabot Camp Access Area	5,326	4%	10%	62%	24%
Barton Cove Nature Area	7,842	15%	19%	45%	21%
Barton Cove Campground	2,963	0%	5%	92%	3%
Barton Cove Canoe and Kayak Rental Area	4,455	2%	0%	98%	0%
State Boat Launch	15,126	1%	2%	74%	23%
Canalside Trail Bike Path	6,362	1%	13%	54%	31%
Gatehouse Fishway Viewing Area ²	27,345	7%	28%	46%	20%
Turners Falls Branch Canal Area/Turners Falls Station No. 1 Fishing Access	1,264	27%	29%	20%	24%
Cabot Woods Fishing Access	18,230 18,053	17%	19%	38%43%	27% 21%
Poplar Street Access Site	1,877	14%	5%	56%	25%
Rose Ledge Climbing Area Parking	1,790	2%	27%	54%	17%
Farley Ledge Climbing Area—Wells Street Parking	2,390	7%	51%	29%	13%
Farley Ledge Climbing Area—Route 2 Parking	6,232	4%	22%	48%	25%
Total Use of the above Recreation Sites	152,769 152,592	10%	16%	50% 51%	23%

¹ Percentages of estimated use by season at each recreation site may not sum to 100% due to rounding. ² Estimated Annual Use includes visitors to the Gatehouse Fishway Viewing Area, the associated picnic area, and the adjacent bike path.

Attachment A to Study No. 3.6.1

Table 4.1.3-2: Percent of Recreation Use by Activity at Each Site

Revision May 2016

Recreation Site	Walk/ Hike/ Jogging	Motor Boating	Fishing	Ride Bikes	Picnicking	Climbing	Non- motor boating	Fishway Viewing	Cross- country Ski	Camping	Riverboat	Sight see	Hunt	Birding	Ice Fish	Ride Horses	Snow Shoe	Whitewater boat (Bypass only)	Ice Skate/ Boat	Unidentified Recreation Activity
Governor Hunt Boat																				
Launch/Picnic Area	0%	53%	12%	0%	0%	0%	15%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	19%
Pauchaug WMA	32%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	0%	23%
Pauchaug Boat Launch	4%	49%	12%	0%	1%	0%	10%	0%	0%	0%	0%	2%	2%	0%	0%	0%	0%	0%	0%	20%
Bennett Meadow WMA	41%	0%	1%	0%	1%	0%	1%	0%	0%	0%	0%	4%	25%	0%	0%	0%	0%	0%	0%	27%
Munn's Ferry Boat Camping																				
Recreation Area	0%	39%	0%	0%	5%	0%	9%	0%	0%	30%	0%	0%	0%	0%	0%	0%	0%	0%	0%	18%
Boat Tour and Riverview																				
Picnic Area	29%	3%	2%	2%	18%	0%	1%	0%	0%	0%	20%	1%	0%	0%	0%	0%	0%	0%	0%	24%
Northfield Mountain Tour																				
and Trail Center	49%	0%	0%	0%	0%	0%	0%	0%	17%	0%	0%	1%	0%	0%	0%	3%	1%	0%	0%	29%
Cabot Camp Access Area	19%	1%	26%	2%	1%	0%	1%	0%	0%	0%	0%	8%	0%	0%	0%	0%	0%	3%	0%	39%
Barton Cove Nature Area	31%	0%	23%	6%	5%	0%	4%	0%	0%	0%	0%	1%	0%	1%	9%	0%	0%	0%	1%	19%
Barton Cove Campground	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Barton Cove Canoe and																				
Kayak Rental Area	0%	8%	4%	0%	12%	0%	60%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	14%
State Boat Launch	1%	74%	2%	0%	1%	0%	11%	0%	0%	0%	0%	1%	0%	2%	0%	0%	0%	0%	0%	8%
Canalside Trail Bike Path	41%	0%	0%	55%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%
Gatehouse Fishway Viewing																				
Area ²	36%	0%	6%	8%	14%	0%	0%	19%	0%	0%	0%	1%	0%	1%	0%	0%	0%	0%	0%	15%
Turners Falls Branch																				
Canal/Station No. 1 Fishing																				
Access	26%	0%	21%	21%	0%	0%	0%	0%	14%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	19%
Cabot Woods Fishing Access	53 58%	0%	11%	10%	3%	0%	0%	0%	0%	0%	0%	1%	0%	1%	0%	0%	0%	0%	0%	20 17%
Poplar Street Access Site	23%	0%	41%	3%	0%	0%	21%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	11%
Rose Ledge Climbing Area																				
Parking	19%	0%	0%	0%	0%	75%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	4%
Farley Ledge Climbing																				
Area—Wells Street Parking	71%	0%	0%	0%	0%	25%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Farley Ledge Climbing																				
Area—Route 2 Parking	20%	0%	0%	0%	0%	75%	0%	0%	2%	0%	0%	1%	0%	0%	0%	1%	1%	0%	0%	1%
Total Project-Wide Use of																				
the above Sites.	29 30%	12%	7%	6%	5%	4%	4%	3%	3%	2%	2%	1%	1%	1%	1>1%	<u>1>1%</u>	0>1%	0>1%	0>1%	18 17%

² Use includes visitors utilizing the Visitor Center and the associated picnic area, which includes a portion of the Canalside Trail Bike Path.

Attachment A to Study No. 3.6.1 Table 4.1.3-3: Recreation Site Capacity Utilization by Site **Revision May 2016**

Recreation Site	Recreation Days	Percent Capacity	
Governor Hunt Boat Launch/Picnic Area	1 812	50%	
Pauchaug WMA	1,012	1%	
Pauchaug Boat Launch	9.630	20%	
Bennett Meadow WMA	3.729	10%	
Munn's Ferry Boat Camping Recreation Area	1.716	40%	
Boat Tour and Riverview Picnic Area	13,651	10%	
Northfield Mountain Tour and Trail Center	20,024	10%	
Cabot Camp Access Area	5,326	15%	
Barton Cove Nature Area	7,842	20%	
Barton Cove Campground	2,963	40%	
Barton Cove Canoe and Kayak Rental Area	4,455	25%	
State Boat Launch	15,126	65%	
Canalside Trail Bike Path	6,362	N/A	
Gatehouse Fishway Viewing Area	27,345	25%	
Turners Falls Branch Canal/Station No. 1 Fishing			
Access	1,264	1%	
Cabot Woods Fishing Access	18,230 18,053	25%	
Poplar Street Access Site	1,877	10%	
Rose Ledge Climbing Area Parking	1,790	60%	
Farley Ledge Climbing Area—Wells Street Parking	2,390	30%	
Farley Ledge Climbing Area—Route 2 Parking	6,232	60%	
Annual Total	152,769 152,592		

Attachment A to Study No. 3.6.1

Table 4.1.2-1: Recreation Use by Activity Type based on Spot Counts and Calibration Counts in 2014 Revision May 2016

Decreation Activity	Estimated Use	Percent (%) of
Recreation Activity	(Recreation Days)	Recreation Use
Walking/Hiking/Jogging	4 5,69146,476	30%
Motor boating	18,470	12%
Fishing	9,966 9,960	7%
Bike Riding	8,7448,643	6%
Picnicking	8,362 8,374	5%
Rock Climbing	6,703	4%
Non-motor boating	6,656 6,625	4%
Fishway Viewing	5,061	3%
Cross-country Skiing	3,960	3%
Camping	3,478	2%
Riverboat touring	2,733	2%
Sightseeing	1,746 1,802	1%
Hunting	1,569	1%
Birding	836 847	1%
Ice Fishing	761	1%
Horseback Riding	746 736	<1%
Snowshoeing	188	<1%
Whitewater boating	171	<1%
Ice skating/ Ice boat	112 97	<1%
Unidentified Activity	26,750 26,005	18 17%
Total	152,769 152,592	100%

Attachment A to Study No. 3.6.1 Table 4.7.2-4: Projected Recreation Use by Activity Type, 2060 **Revision May 2016**

	2014 Use	2060 Projected Use	Percent (%) of
Recreation Activity	(Recreation Days)	(Recreation Days)	Recreation Use
Walking/Hiking/Jogging	45,69146,476	52,320 53,218	30%
Motor Boating	18,470	22,158	13%
Fishing	9,966 9,960	10,19010,184	6%
Bike Riding	8,7448,643	10,013 9,897	6%
Picnicking	8,362 8,374	9,017 9,004	5%
Rock Climbing	6,703	8,182	5%
Non-motor Boating	6,656 6,625	7,199 7,165	4%
Interpretive—Fishway			
Viewing	5,061	5,756	3%
Cross-country Skiing	3,960	5,335	3%
Camping	3,478	3,745	2%
Riverboat Touring	2,733	2,966	2%
Sightseeing	1,802 1,746	1,956 1,895	1%
Hunting	1,569	1,314	1%
Birding	847836	919 908	1%
Ice Fishing	761	778	0%
Horseback Riding	746 736	918 908	1%
Snowshoeing	188	253	0%
Whitewater boating	171	185	0%
Ice skating/ Ice boat	112 97	150 132	0%
Unidentified Recreation			
Activity	26,75026,005	30,283 30,119	17%
Projects Total	152,769 152,592	175,68 4175,503	

Attachment B to Study 3.6.1.

Table 4.2-3: Total Number of Times a Recreational Survey Respondent indicated they had Participated in Certain Recreational Activities at the Northfield Mountain and Turners Falls Projects.

Activity	Primary Activity This Trip	Spring (3/1 – 5/31)	Summer (6/1 – 8/31)	Fall (9/1 – 11/30)	Winter (12/1 – 2/28)	Total
Backpacking	3	7	8	6	5	26
Birding	66	90	84	82	51	307
Camping	7	5	17	6	0	28
Canoeing	15	28	40	29	0	97
Dog Walking	181	182	190	182	94	648
Driving for Pleasure	5	9	9	9	3	30
Educational						
Programs	6	8	7	8	2	25
Fishing from a Boat	27	64	88	65	4	221
Fishing from Shore	139	160	179	146	13	498
Fishway Viewing	6	11	11	2	0	24
Hiking	29	73	76	73	26	248
Horseback Riding	0	0	0	0	0	0
Hunting	6	3	3	10	5	21
Ice Fishing	34	1	0	0	45	46
Kayaking	40	59	71	53	6	189
Mountain Biking	0	11	14	11	1	37
Multi-day Float Trip	5	1	5	2	1	9
Nature Observation	97	132	133	124	50	439
Orienteering	0	0	2	1	0	3
Other	57	42	50	40	4	136
Paddle Boarding	2	1	5	1	0	7
Photography	28	41	39	43	18	141
Picnicking	58	97	114	86	4	301
Power Boating	43	42	68	41	1	152
Riding Jet Ski	0	1	6	1	0	8
Road Bicycling	33	97	107	98	6	308
Rock Climbing	21	22	23	20	4	69
Rowing	1	3	4	3	0	10
Running	6	18	20	20	4	62
Sailing	2	0	1	0	1	2
Sightseeing	46	32	37	35	12	116
Skiing	2	1	0	0	14	15
Snowshoeing	2	0	0	0	11	11
Swimming	19	16	42	19	0	77
Tubing	4	6	11	3	0	20
Walking	308	336	337	328	144	1,145
Waterskiing	1	1	5	1	1	8
Whitewater Boating	3	4	3	2	1	10

Revision (May 2016)

Attachment B to Study 3.6.1 (Redline Version).

 Table 4.2-3: Total Number of Times a Recreational Survey Respondent indicated they had Participated in Certain Recreational Activities at the Northfield Mountain and Turners Falls Projects.

Attachment B to Study No. 3.6.1

 Table 4.2-3: Total Number of Times a Recreational Survey Respondent indicated they had Participated in Certain Recreational Activities at the Northfield Mountain and Turners Falls Projects.

 Revision (May 2016)

	Drimory	Spring	Summor	Fall	Wintor	
Activity	Filliary Activity This	Spring (2/1		Ган (0/1	(12/1	Total
Activity		(3/1 - 5/21)	(0/1 - 0/21)	(9/1 - 11/20)	(12/1 - 2/29)	Totai
	1 rip	5/31)	8/31)	11/30)	2/28)	26
Backpacking	20	7	0	(7	F	20
Disting	3 2	/	8	0 /	5	21
Birding	66	90	84	82	51 54	<u>30/310</u>
Camping	7	5	17	6	0	28
Canoeing	15 18	28	40	29 27	0 0	<u>97101</u>
Dog Walking	181 185	182	190 189	182 178	94114	648 663
Driving for Pleasure	5	9	<u>910</u>	96	310	<u>3035</u>
Educational						
Programs	<u>65</u>	8	7	8	2	25
Fishing from a Boat	27 29	64 66	<mark>8886</mark>	65 63	4 12	221 227
Fishing from Shore	139 142	<u>160162</u>	179 174	146 131	13 69	498 536
Fishway Viewing	6	11	11	2	0	24
Hiking	29 31	73	76	73 69	26 38	248 256
Horseback Riding	0	0	0	0	0	0
Hunting	<mark>6</mark> 7	3	3	10	5 8	21 2 4
Ice Fishing	34	1	0	0	45	46
Kayaking	4041	59	71	534 9	<u>624</u>	189 203
Mountain Biking	<u>01</u>	11	14	11 10	14	37 39
Multi-day Float Trip	5	1	5	2	1	9
Nature Observation	97 98	132 133	133	124 118	50 73	4394 57
Orienteering	0	0	2	1	0	3
Other	57 55	42	50	40 39	47	136 138
Paddle Boarding	2	1	5	1	0	7
Photography	28 29	41	3940	43 33	18 55	141 169
Picnicking	58 61	97	114 113	86 81	4 21	<u>301312</u>
Power Boating	4344	42	<u>6867</u>	41	13	152153
Riding Jet Ski	0	1	6	1	0	8
Road Bicycling	3334	9798	107105	9897	<u>612</u>	308312
Rock Climbing	2122	22	23	20 <u>19</u>	47	<u>6971</u>
Rowing	1	3	4	3	0	10
Running	67	18	20	2018	410	6266
Sailing	2	0	1	0	1	200
Sightseeing	4641	3233	37	3528	1238	116136
Skiing	2	1	0	0	1250	110130
Snowshoeing	2	0	0	0	11	13
Swimming	10	1622	4224	1015	11 022	11 7702
Tubing	19	10 22	42 34 1110	22	05	11 23 2022
Tuomg	40	0	11-10	<u>)</u>	60	20 23
Walking	200204	226227	227225	200200	144102	1,143 1,1 77
Watanaliira	<u>308304</u>	<u> </u>	<u> </u>	328 322	144183	++ 00
waterskiing	12	1	54		1 3	1015
whitewater Boating	3	43	3	21	18	1015

STUDY 3.6.5 ATTACHMENTS

Filed Date: 05/31/2016

Northfield Mountain Pumped Storage Project (No. 2485) and Turners Falls Hydroelectric Project (No. 1889) Study Reports Comments and Responses

> Attachment A to Study 3.6.5 Revised Figure 4.4-1. Licensee Owned Lands

Legend

Project Boundary

Licensee Owned Lands inside the Project Boundary

Other Lands inside the Project Boundary (e.g., flowage rights, leases, easements, etc.)

Licensee Owned Lands Outside of the Project Boundary within 200' Service Layer Credils: Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Es (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus

DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and ff GIS User Community

Errot I take	FIRSTLIGHT HYDRO GENERATING COMPANY Northfield Mountain Pumped Storage Project No. 2485 Turners Falls Hydroelectric Project No. 1889	Revised Figure 4.4-1 Licensee Owned Lands Map 1 of 8		
FIISL LIght	Study 3.6.5 Land Use Inventory			
GDF SVez	0 625 1,250 2,500 Feet	Copyright © 2015 FirstLight Power Resources All rights reserved.		

Path: W:\gis\studies\3_6_5\maps\ownership.mxd

Rainbow Beach and North Bank Survey Transects

Point_Id	Northing	Easting	Elevation	Time_
bench.rb	2944832.45710000000	362603.9620000000	109.6870000000	11/26/2014
bench.rb.1	2944832.47770000000	362604.23860000000	109.93620000000	11/26/2014
bench.rb.2	2944832.4761000000	362604.2031000000	110.02880000000	11/26/2014
nb.bench.1	2945482.5943000000	360853.13460000000	113.89250000000	11/26/2014
nbt1.1	2945477.12550000000	360896.3236000000	113.2710000000	11/26/2014
nbt1.2	2945498.8849000000	360898.8902000000	100.91730000000	11/26/2014
nbt1.3	2945493.2500000000	360898.41550000000	102.30840000000	11/26/2014
nbt1.4	2945485.90710000000	360897.0241000000	104.97330000000	11/26/2014
nbt1.5	2945484.3680000000	360898.0395000000	108.63710000000	11/26/2014
nbt1.6	2945482.4756000000	360897.6327000000	108.93920000000	11/26/2014
nbt1.7	2945479.1103000000	360897.48110000000	111.92980000000	11/26/2014
nbt2.1	2945489.0281000000	360745.8772000000	114.9013000000	11/26/2014
nbt2.2	2945494.3921000000	360746.3252000000	111.24960000000	11/26/2014
nbt2.3	2945500.77790000000	360746.51880000000	107.13560000000	11/26/2014
nbt2.4	2945506.03270000000	360748.3103000000	103.54110000000	11/26/2014
nbt2.5	2945507.18830000000	360748.8057000000	102.55290000000	11/26/2014
nbt2.6	2945508.8330000000	360749.67330000000	102.24160000000	11/26/2014
nbt2.7	2945514.76840000000	360750.8730000000	100.83580000000	11/26/2014
nbt3.1	2945529.9361000000	360592.4653000000	114.73220000000	11/26/2014
nbt3.2	2945530.6492000000	360592.95530000000	113.25990000000	11/26/2014
nbt3.3	2945535.7874000000	360595.98440000000	109.45560000000	11/26/2014
nbt3.4	2945535.7987000000	360595.96290000000	109.43380000000	11/26/2014
nbt3.5	2945538.7454000000	360598.3323000000	104.98320000000	11/26/2014
nbt3.6	2945540.9438000000	360598.7049000000	103.5210000000	11/26/2014
nbt3.7	2945546.2735000000	360601.07940000000	102.1508000000	11/26/2014
nbt3.8	2945551.1943000000	360603.47330000000	101.18760000000	11/26/2014
nbt4.1	2945602.02720000000	360382.0335000000	115.28560000000	11/26/2014
nbt4.2	2945603.1335000000	360382.32370000000	113.74440000000	11/26/2014
nbt4.3	2945606.49870000000	360384.07470000000	109.87460000000	11/26/2014
nbt4.4	2945608.3685000000	360383.72420000000	106.09240000000	11/26/2014
nbt4.5	2945611.48900000000	360386.3783000000	103.44550000000	11/26/2014
nbt4.6	2945615.61690000000	360388.5336000000	102.33660000000	11/26/2014
nbt4.7	2945620.25940000000	360390.32320000000	101.10830000000	11/26/2014
rb.bench	2944832.4418000000	362604.2815000000	110.22930000000	11/26/2014
rb11.3	2944065.4075000000	362665.35690000000	103.22210000000	11/26/2014
rb11.4	2944069.2042000000	362655.5410000000	103.69120000000	11/26/2014
rb11.5	2944069.5487000000	362649.1894000000	104.14080000000	11/26/2014
rb11.6	2944070.40660000000	362640.6448000000	105.77950000000	11/26/2014
rb11.7	2944070.68820000000	362636.9335000000	106.5502000000	11/26/2014
rb11.8	2944071.16530000000	362627.62310000000	108.49770000000	11/26/2014
rb11.9	2944071.7204000000	362622.52880000000	108.29850000000	11/26/2014
rb11.10	2944072.3204000000	362617.27060000000	108.46660000000	11/26/2014
rb11.11	2944074.19610000000	362613.99820000000	108.8081000000	11/26/2014
rb11.12	2944076.78190000000	362607.4430000000	110.3410000000	11/26/2014
rb12.1	2943946.22370000000	362686.9998000000	101.78500000000	11/26/2014
rb12.2	2943951.4244000000	362673.03770000000	102.76380000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
rb12.3	2943954.8724000000	362656.95110000000	102.96210000000	11/26/2014
rb12.4	2943958.90970000000	362642.0031000000	103.45100000000	11/26/2014
rb12.5	2943962.52990000000	362626.17950000000	104.51100000000	11/26/2014
rb12.6	2943965.28420000000	362612.6067000000	105.36860000000	11/26/2014
rb12.7	2943968.14130000000	362603.63090000000	106.68890000000	11/26/2014
rb12.8	2943973.1363000000	362594.11590000000	107.82550000000	11/26/2014
rb12.9	2943975.9240000000	362586.4353000000	108.82450000000	11/26/2014
rbt1.1	2945064.9045000000	362570.18690000000	101.33840000000	11/26/2014
rbt1.2	2945061.8458000000	362564.8823000000	102.5200000000	11/26/2014
rbt1.3	2945061.02440000000	362564.4198000000	103.66760000000	11/26/2014
rbt1.4	2945056.51530000000	362557.74190000000	103.36120000000	11/26/2014
rbt1.5	2945053.9405000000	362553.5198000000	106.80210000000	11/26/2014
rbt1.6	2945050.01220000000	362550.29930000000	107.12660000000	11/26/2014
rbt1.7	2945044.8356000000	362548.81710000000	115.46080000000	11/26/2014
rbt2.2	2944974.56290000000	362626.8664000000	101.64530000000	11/26/2014
rbt2.3	2944969.94600000000	362617.25840000000	102.43580000000	11/26/2014
rbt2.4	2944965.79000000000	362609.87880000000	103.28460000000	11/26/2014
rbt2.5	2944961.69240000000	362601.80120000000	104.52570000000	11/26/2014
rbt2.6	2944958.72230000000	362593.8310000000	106.49020000000	11/26/2014
rbt2.7	2944957.98690000000	362590.55150000000	107.02630000000	11/26/2014
rbt2.8	2944978.0381000000	362632.66390000000	101.49140000000	11/26/2014
rbt2.9	2944947.52720000000	362587.3038000000	109.98770000000	11/26/2014
rbt2.10	2944944.47270000000	362579.81600000000	110.52580000000	11/26/2014
rbt2.11	2944952.1091000000	362594.57120000000	106.62900000000	11/26/2014
rbt3.1	2944882.70770000000	362671.46970000000	101.63730000000	11/26/2014
rbt3.2	2944876.82740000000	362658.6940000000	102.44880000000	11/26/2014
rbt3.3	2944871.8504000000	362647.3262000000	103.29500000000	11/26/2014
rbt3.4	2944868.12070000000	362637.06320000000	104.45290000000	11/26/2014
rbt3.5	2944864.5938000000	362627.87520000000	105.85510000000	11/26/2014
rbt3.6	2944861.83590000000	362620.47140000000	107.50760000000	11/26/2014
rbt3.7	2944857.46260000000	362613.85920000000	109.16510000000	11/26/2014
rbt3.8	2944853.39820000000	362604.56830000000	115.89510000000	11/26/2014
rbt4.1	2944787.96870000000	362717.87570000000	101.72770000000	11/26/2014
rbt4.2	2944784.3298000000	362705.50560000000	102.26470000000	11/26/2014
rbt4.3	2944779.4808000000	362686.39110000000	102.72570000000	11/26/2014
rbt4.4	2944776.43140000000	362673.23290000000	103.43840000000	11/26/2014
rbt4.5	2944774.01070000000	362659.43990000000	105.42830000000	11/26/2014
rbt4.6	2944773.22100000000	362654.1301000000	105.75730000000	11/26/2014
rbt4.7	2944772.55990000000	362651.29190000000	106.92820000000	11/26/2014
rbt4.8	2944769.66710000000	362644.28640000000	107.82660000000	11/26/2014
rbt4.9	2944767.7032000000	362636.42660000000	108.30550000000	11/26/2014
rbt5.1	2944685.5049000000	362732.41170000000	101.74240000000	11/26/2014
rbt5.2	2944684.3146000000	362716.79350000000	102.61810000000	11/26/2014
rbt5.3	2944680.7843000000	362702.13310000000	102.94500000000	11/26/2014
rbt5.4	2944676.93330000000	362686.34470000000	103.48050000000	11/26/2014
rbt5.5	2944675.2302000000	362677.93180000000	104.17570000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
rbt5.6	2944674.5745000000	362663.53090000000	105.80740000000	11/26/2014
rbt5.7	2944673.2081000000	362660.02340000000	105.59620000000	11/26/2014
rbt5.8	2944671.4728000000	362648.8202000000	106.67480000000	11/26/2014
rbt5.9	2944670.6423000000	362638.4723000000	107.62450000000	11/26/2014
rbt6.1	2944590.6740000000	362748.9678000000	101.71370000000	11/26/2014
rbt6.2	2944585.1494000000	362731.85420000000	102.51830000000	11/26/2014
rbt6.3	2944581.6918000000	362721.04580000000	102.8004000000	11/26/2014
rbt6.4	2944579.8044000000	362715.75670000000	102.84540000000	11/26/2014
rbt6.5	2944575.0686000000	362697.0739000000	103.51780000000	11/26/2014
rbt6.6	2944574.99970000000	362694.33890000000	103.20240000000	11/26/2014
rbt6.7	2944572.3392000000	362685.2936000000	103.67210000000	11/26/2014
rbt6.8	2944569.8470000000	362674.57760000000	104.76540000000	11/26/2014
rbt6.9	2944568.2131000000	362666.61350000000	105.77330000000	11/26/2014
rbt6.10	2944567.7824000000	362653.4373000000	108.00920000000	11/26/2014
rbt6.11	2944566.19840000000	362645.6791000000	108.34350000000	11/26/2014
rbt7.1	2944483.3045000000	362795.6991000000	101.69570000000	11/26/2014
rbt7.2	2944480.5349000000	362778.55840000000	101.80990000000	11/26/2014
rbt7.3	2944480.0928000000	362753.39890000000	102.31390000000	11/26/2014
rbt7.4	2944478.4173000000	362730.36630000000	102.70920000000	11/26/2014
rbt7.5	2944475.5549000000	362710.96530000000	103.19080000000	11/26/2014
rbt7.6	2944472.9492000000	362699.86650000000	103.62980000000	11/26/2014
rbt7.7	2944472.3088000000	362687.7032000000	104.86520000000	11/26/2014
rbt7.8	2944470.8214000000	362677.83330000000	105.87820000000	11/26/2014
rbt7.9	2944469.1949000000	362663.7387000000	107.10090000000	11/26/2014
rbt8.1	2944375.67990000000	362817.75820000000	101.73730000000	11/26/2014
rbt8.2	2944375.5637000000	362791.59490000000	102.23230000000	11/26/2014
rbt8.3	2944376.2218000000	362773.27480000000	102.74330000000	11/26/2014
rbt8.4	2944376.6467000000	362751.9305000000	102.71210000000	11/26/2014
rbt8.5	2944375.8923000000	362729.3290000000	102.85620000000	11/26/2014
rbt8.6	2944374.5327000000	362711.83110000000	103.02070000000	11/26/2014
rbt8.7	2944374.9218000000	362707.06230000000	102.71210000000	11/26/2014
rbt8.8	2944375.1361000000	362698.1013000000	103.41830000000	11/26/2014
rbt8.9	2944375.1461000000	362689.2138000000	104.19050000000	11/26/2014
rbt8.10	2944375.1000000000	362682.4123000000	105.59450000000	11/26/2014
rbt9.1	2944269.5145000000	362841.7204000000	101.76230000000	11/26/2014
rbt9.2	2944271.85970000000	362830.11330000000	101.55450000000	11/26/2014
rbt9.3	2944269.60750000000	362812.4823000000	102.37580000000	11/26/2014
rbt9.4	2944268.5160000000	362792.09250000000	102.50110000000	11/26/2014
rbt9.5	2944268.5160000000	362788.6028000000	102.28500000000	11/26/2014
rbt9.6	2944269.8321000000	362769.63630000000	102.59830000000	11/26/2014
rbt9.7	2944271.8837000000	362746.27280000000	102.56240000000	11/26/2014
rbt9.8	2944274.21190000000	362725.8810000000	102.69120000000	11/26/2014
rbt9.9	2944275.6379000000	362708.02110000000	102.87920000000	11/26/2014
rbt9.10	2944275.2583000000	362692.7185000000	103.42470000000	11/26/2014
rbt9.11	2944276.91100000000	362679.09870000000	104.43750000000	11/26/2014
rbt9.12	2944280.4824000000	362670.55840000000	105.08480000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
rbt9.13	2944275.0430000000	362656.58880000000	107.31530000000	11/26/2014
rbt10.1	2944158.7043000000	362741.8451000000	101.84880000000	11/26/2014
rbt10.2	2944160.99630000000	362727.9813000000	102.03140000000	11/26/2014
rbt10.3	2944162.8358000000	362713.34170000000	102.35470000000	11/26/2014
rbt10.4	2944165.5096000000	362700.35790000000	102.6102000000	11/26/2014
rbt10.5	2944167.81310000000	362692.5780000000	102.44830000000	11/26/2014
rbt10.6	2944169.46510000000	362682.15490000000	102.65170000000	11/26/2014
rbt10.7	2944169.4181000000	362678.29840000000	102.67670000000	11/26/2014
rbt10.8	2944170.44990000000	362667.89830000000	104.66370000000	11/26/2014
rbt10.9	2944169.7100000000	362660.2068000000	107.03740000000	11/26/2014
rbt10.10	2944167.6501000000	362656.6621000000	106.28050000000	11/26/2014
rbt10.11	2944167.51680000000	362650.28120000000	107.85900000000	11/26/2014
rbt10.12	2944167.21420000000	362648.11610000000	108.04150000000	11/26/2014
rbt10.13	2944167.6036000000	362644.0858000000	109.29660000000	11/26/2014
rbt10.14	2944169.68710000000	362639.2530000000	109.64280000000	11/26/2014
rbt10.15	2944171.4410000000	362634.9730000000	108.94710000000	11/26/2014
rbt10.16	2944175.2228000000	362626.9354000000	110.82510000000	11/26/2014
rbt10.17	2944173.41220000000	362621.2876000000	111.39820000000	11/26/2014
rbt11.1	2944057.7698000000	362694.61100000000	101.80180000000	11/26/2014
rbt11.2	2944061.27590000000	362679.6716000000	102.45390000000	11/26/2014
rbt13.1	2943867.87990000000	362626.87970000000	102.07620000000	11/26/2014
rbt13.2	2943873.75750000000	362613.73440000000	102.96240000000	11/26/2014
rbt13.3	2943880.48950000000	362599.2759000000	103.71330000000	11/26/2014
rbt13.4	2943884.59500000000	362591.2768000000	103.74250000000	11/26/2014
rbt13.5	2943889.4067000000	362582.7221000000	104.26950000000	11/26/2014
rbt13.6	2943893.75510000000	362572.8624000000	106.71310000000	11/26/2014
rbt14.1	2943771.31390000000	362584.0596000000	101.75640000000	11/26/2014
rbt14.2	2943779.34570000000	362572.37370000000	102.58960000000	11/26/2014
rbt14.3	2943785.9043000000	362560.5408000000	103.51070000000	11/26/2014
rbt14.4	2943793.3421000000	362543.7732000000	103.90550000000	11/26/2014
rbt14.5	2943795.0023000000	362538.7362000000	105.12650000000	11/26/2014
rbt14.6	2943796.02690000000	362537.3370000000	104.62500000000	11/26/2014
rbt14.7	2943799.5726000000	362529.0773000000	104.89240000000	11/26/2014
rbt14.8	2943802.0853000000	362522.9743000000	106.61510000000	11/26/2014
rbt14.9	2943803.8693000000	362517.76560000000	106.40290000000	11/26/2014
rbt14.10	2943806.76870000000	362506.87730000000	106.49880000000	11/26/2014
rbt14.11	2943805.75790000000	362502.9519000000	108.35200000000	11/26/2014
rbt15.1	2943675.94900000000	362535.3606000000	101.93990000000	11/26/2014
rbt15.2	2943682.8617000000	362522.8602000000	102.81730000000	11/26/2014
rbt15.3	2943691.0641000000	362507.92840000000	103.63050000000	11/26/2014
rbt15.4	2943702.77260000000	362487.4803000000	105.03090000000	11/26/2014
rbt15.5	2943710.84650000000	362477.32690000000	105.34680000000	11/26/2014
rbt15.6	2943717.03730000000	362467.78930000000	105.93300000000	11/26/2014
rbt15.7	2943722.1315000000	362462.83380000000	106.16970000000	11/26/2014
rbt15.8	2943726.5005000000	362458.67190000000	107.54630000000	11/26/2014
rbt15.9	2943729.08270000000	362456.32970000000	107.63340000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
rbt15.10	2943730.74130000000	362452.51310000000	108.24480000000	11/26/2014
rbt16.1	2943585.3860000000	362479.3885000000	102.02380000000	11/26/2014
rbt16.2	2943588.8338000000	362474.8151000000	102.59830000000	11/26/2014
rbt16.3	2943599.31710000000	362461.98330000000	103.28440000000	11/26/2014
rbt16.4	2943605.0834000000	362455.9562000000	103.96450000000	11/26/2014
rbt16.5	2943616.29570000000	362442.9818000000	104.52340000000	11/26/2014
rbt16.6	2943626.5734000000	362431.10660000000	104.8780000000	11/26/2014
rbt16.7	2943641.6190000000	362420.9431000000	105.37160000000	11/26/2014
rbt16.8	2943649.4057000000	362415.8223000000	106.3454000000	11/26/2014
rbt16.9	2943655.8546000000	362409.0826000000	106.89240000000	11/26/2014
rbt16.10	2943657.98240000000	362407.4435000000	106.9059000000	11/26/2014
rbt16.11	2943659.5593000000	362404.44770000000	107.32870000000	11/26/2014
rbt16.12	2943665.1068000000	362395.4582000000	107.8950000000	11/26/2014
rbt17.1	2943511.12550000000	362410.5774000000	101.8913000000	11/26/2014
rbt17.2	2943521.59440000000	362400.8720000000	102.9280000000	11/26/2014
rbt17.3	2943528.47770000000	362393.66350000000	103.17060000000	11/26/2014
rbt17.4	2943531.67550000000	362389.21680000000	103.80260000000	11/26/2014
rbt17.5	2943535.82510000000	362384.8508000000	103.95720000000	11/26/2014
rbt17.6	2943543.3432000000	362376.41880000000	104.33970000000	11/26/2014
rbt17.7	2943553.53890000000	362364.51510000000	104.62630000000	11/26/2014
rbt17.8	2943560.58850000000	362357.92190000000	104.83260000000	11/26/2014
rbt17.9	2943567.99660000000	362350.87840000000	105.63050000000	11/26/2014
rbt17.10	2943570.7501000000	362348.5095000000	105.40760000000	11/26/2014
rbt17.11	2943573.97670000000	362346.5260000000	105.63630000000	11/26/2014
rbt17.12	2943576.9100000000	362343.39690000000	106.25320000000	11/26/2014
rbt17.13	2943579.4924000000	362339.91450000000	106.02650000000	11/26/2014
rbt17.14	2943584.2046000000	362335.54550000000	106.87690000000	11/26/2014
rbt17.15	2943593.1958000000	362330.04510000000	107.32480000000	11/26/2014
rbt18.1	2943454.8988000000	362314.29670000000	101.88890000000	11/26/2014
rbt18.2	2943458.7295000000	362311.03210000000	102.61300000000	11/26/2014
rbt18.3	2943466.9708000000	362303.14710000000	102.82110000000	11/26/2014
rbt18.4	2943471.8445000000	362298.7594000000	103.20510000000	11/26/2014
rbt18.5	2943476.6700000000	362294.9292000000	103.83780000000	11/26/2014
rbt18.6	2943485.4506000000	362287.3843000000	104.51820000000	11/26/2014
rbt18.7	2943492.15640000000	362281.82590000000	104.71340000000	11/26/2014
rbt18.8	2943501.4362000000	362275.42210000000	105.50720000000	11/26/2014
rbt18.9	2943508.07230000000	362269.67110000000	106.26780000000	11/26/2014
rbt18.10	2943514.4081000000	362264.9950000000	106.52030000000	11/26/2014
rbt19.1	2943392.21420000000	362235.4724000000	101.93740000000	11/26/2014
rbt19.2	2943398.2043000000	362232.10550000000	102.24310000000	11/26/2014
rbt19.3	2943399.9105000000	362231.01550000000	102.50220000000	11/26/2014
rbt19.4	2943410.77120000000	362223.26750000000	102.74810000000	11/26/2014
rbt19.5	2943410.98130000000	362223.17220000000	102.78370000000	11/26/2014
rbt19.6	2943421.26980000000	362217.50670000000	103.49650000000	11/26/2014
rbt19.7	2943425.6448000000	362215.78800000000	103.89090000000	11/26/2014
rbt19.8	2943428.63440000000	362215.11080000000	103.85030000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
rbt19.9	2943436.98140000000	362210.21110000000	105.43550000000	11/26/2014
rbt19.10	2943442.1647000000	362205.73120000000	106.50960000000	11/26/2014
rbt19.11	2943448.5803000000	362201.53190000000	106.56190000000	11/26/2014
rbt19.12	2943453.1502000000	362197.7946000000	106.19320000000	11/26/2014
rbt19.13	2943459.1670000000	362193.9856000000	105.85340000000	11/26/2014
rbt19.14	2943465.6928000000	362186.7380000000	106.27050000000	11/26/2014
rbt20.1	2943348.1006000000	362151.24390000000	101.99590000000	11/26/2014
rbt20.2	2943348.1828000000	362151.2765000000	101.96540000000	11/26/2014
rbt20.3	2943348.0279000000	362151.1297000000	101.8400000000	11/26/2014
rbt20.4	2943352.8301000000	362148.14990000000	102.53470000000	11/26/2014
rbt20.5	2943359.46660000000	362141.2981000000	102.87170000000	11/26/2014
rbt20.6	2943366.0446000000	362134.7846000000	102.91240000000	11/26/2014
rbt20.7	2943371.08980000000	362130.1293000000	103.19410000000	11/26/2014
rbt20.8	2943375.22550000000	362126.7021000000	103.71770000000	11/26/2014
rbt20.9	2943383.26970000000	362123.6738000000	104.33640000000	11/26/2014
rbt20.10	2943393.4835000000	362116.5736000000	104.61060000000	11/26/2014
rbt21.1	2943306.3913000000	362067.5843000000	101.97980000000	11/26/2014
rbt21.2	2943311.55970000000	362064.2107000000	102.50430000000	11/26/2014
rbt21.3	2943319.5905000000	362060.6510000000	102.98180000000	11/26/2014
rbt21.4	2943324.8396000000	362056.48110000000	103.10250000000	11/26/2014
rbt21.5	2943331.5703000000	362054.7639000000	103.8904000000	11/26/2014
rbt21.6	2943339.8547000000	362051.36270000000	104.69490000000	11/26/2014
rbt21.7	2943348.2670000000	362045.6913000000	104.02890000000	11/26/2014
rbt22.1	2943262.18620000000	361981.60720000000	101.90900000000	11/26/2014
rbt22.2	2943267.9090000000	361977.4083000000	102.70060000000	11/26/2014
rbt22.3	2943276.4356000000	361973.0483000000	103.25390000000	11/26/2014
rbt22.4	2943279.6123000000	361970.9901000000	103.8240000000	11/26/2014
rbt22.5	2943287.4900000000	361966.3029000000	104.07350000000	11/26/2014
rbt22.6	2943291.83970000000	361962.44330000000	103.70680000000	11/26/2014
rbt23.1	2943221.3118000000	361882.48770000000	102.03320000000	11/26/2014
rbt23.2	2943226.1876000000	361880.7602000000	102.55130000000	11/26/2014
rbt23.3	2943230.5530000000	361877.96120000000	103.07230000000	11/26/2014
rbt23.4	2943241.3418000000	361870.33660000000	103.3003000000	11/26/2014
rbt23.5	2943248.17970000000	361867.9012000000	103.2080000000	11/26/2014
rbt24.1	2943186.09330000000	361773.6187000000	101.95720000000	11/26/2014
rbt24.2	2943195.5604000000	361767.15970000000	103.12560000000	11/26/2014
testtopo.1	2945434.73990000000	361294.3943000000	112.54900000000	11/26/2014
topo.1	2943909.4806000000	362649.2048000000	102.01250000000	11/26/2014
topo.2	2943936.4887000000	362672.4632000000	101.93300000000	11/26/2014
topo.3	2943960.0840000000	362699.35890000000	101.89190000000	11/26/2014
topo.4	2944000.4491000000	362685.7046000000	101.94270000000	11/26/2014
topo.5	2944027.7469000000	362674.09610000000	102.00970000000	11/26/2014
topo.6	2944051.0074000000	362677.14470000000	101.99750000000	11/26/2014
topo.7	2944061.4241000000	362697.14700000000	102.05950000000	11/26/2014
topo.8	2944092.36550000000	362714.44710000000	102.1230000000	11/26/2014
topo.9	2944118.2372000000	362737.18670000000	101.94090000000	11/26/2014

Point_Id	Northing	Easting	Elevation	Time_
topo.10	2944174.12270000000	362730.3200000000	101.68880000000	11/26/2014
topo.11	2944192.7604000000	362711.94250000000	101.82470000000	11/26/2014
topo.12	2944229.3086000000	362745.82910000000	101.78230000000	11/26/2014

85.5-E

108	25
80	10

rock bas Station 69.5-P	55			
72.9-E				
73.9-Е				
74.3-Р 76.2-Е				
80.1-P				
82.0-E				
84.0-E				
84.5-E				

length class (MM)	September	June-July	September	June-July
25	0	0	0	0
50	14	0	14	0
75	2	1	16	1
100	6	2	22	3
125	4	0	26	3
150	1	9	27	12
175	5	7	32	19
200	5	7	37	26
225	8	3	45	29
250	1	3	46	32
275	1	0	47	32
300	0	0	47	32

pumpkinseed	pumpkinseec June-July		September	
	Length	Weight	Length	Weight
	160	80	173	110
	165	120	205	120
	190	160	132	40
	205	180	165	90
	160	90	187	40
	165	110	175	110
	165	110	175	120
	180	140	175	130
	155	120	137	55
	200	200	153	80
	165	110	168	105
	150	100	127	50
	185	120	195	185
	150	90	1/2	115
	180	110	202	200
	165	85 115	121	30
	1/0	115	198	170
	160	80 120	150	80
	180	120	188	100
	165	130	117	35
	155	90	182	20
	100	90 70	113	140
	140	70 60	173	50
	140	120	163	105
	150	85	103	40
	130	120	114	30
	165	85	182	160
	180	160	174	110
	155	140	187	150
	165	110	184	150
	165	100	106	30
	155	80	100	20
	165	110	101	20
	165	115	102	20
	155	100	77	15
	200	200	87	15
	75	12	95	13
			96	15
			103	15
			106	20
			105	20
			113	20
			100	20
			96	20

June-July September June-July

0	0	0
0	0	0
1	0	1
0	7	1
0	19	1
5	23	6
22	35	28
9	43	37
1	45	38
0	45	38
0	45	38
0	45	38

	June-July		September	
Station	Length	Weight	Length	Weight
69.5-P	190	80	165	50
	185	70	230	140
	250	190	200	80
	180	60	170	50
	170	40	166	45
	160	60	187	70
	175	70	199	80
	210	100	159	45
	180	80	167	50
	195	100	179	50
	190	90	185	70
	170	60	162	40
	175	70	219	100
	180	70	217	120
	165	50	210	100
	230	160	205	90
	190	80	220	110
	215	120	170	50
	210	120	1/0	55
	100	45	188	6U F 0
	215	110	205	50 100
	212	110	205	20
	200	90 110	100	50
	205	00	100	65
	165	50	105	50
	105	75	168	50
	175	65	136	40
	150	50	241	150
	210	110	212	100
	120	70	163	40
	165	60	223	120
	145	30	158	40
	165	50	177	55
	255	190	195	70
	175	70	177	50
	220	140	180	50
	195	100	130	20
	195	70	130	25
	210	100	173	50
	185	60	185	70
	195	80	170	50
	270	230	150	30
	175	70	267	250
	185	70	191	90

180	70	170	60
210	100	160	50
155	50	235	160
205		156	45
160	50	140	30
175	90	142	30
155	60	151	45
160	50	223	140
195	70	150	45
105	15	246	220
180	70	225	150
200	90	183	80
165	70	162	50
205	100	155	50
165	70	147	40
175	60	123	20
180	80	116	15
155	50	127	20
180	70	108	10
125	100	116	15
190	80	116	15
190	90	120	18
125	20	120	18
195	100	120	18
230	160	134	20
215	120	83	10
240	180	132	25
160	60	123	20
180	70	130	25
185	95	87	10
165	65	115	16
180	/5	115	16
215	125	115	16
1/5	80	115	16
200	100	115	16
170	65 CF	115	16
170	20	115	10
120	70	115	10
100	90	115	10
195	100	115	10
205	200	115	10
200 205	200	115	10
205 170	100 70	115	1C 1C
105	7U 00	115	10
100	90	115	10
190	90 70	115	10
100	70	112	10

69.6-VS

69.9-E

7	0	.1	-V	'S
•	-		-	-

71.1-P

	160	40	97	12
	245	160	95	10
	160	60	100	10
	215	110	109	20
	170	70	116	20
	190	85	96	10
	200	85	100	10
	170	65	103	12
	165	55	101	10
	210	120	100	10
	150	45	105	15
	180	20	100	10
	180	70	102	10
	160	40	105	15
72.9-E	150	50	101	20
	180	70	57	5
	235	150	58	5
	265	240	68	6
	120	50	71	5
73.9-E	200	95	70	5
	185	80	70	5
	190	95	76	6
	185	70	67	5
	190	105	70	5
	210	110	65	5
74.3-P	230	170	69	5
	210	115	61	6
	210	120	75	6
	170	70	60	4
	160	60	60	4
	165	60	60	4
76.2-E	295	350	60	4
80.1-P	200	95	60	4
	210	120	60	4
82.0-E	310	440	60	4
	220	160	60	4
	195	100	60	4
84.0-E	300	400	60	4
	170	60	60	4
	220	145	60	4
84.5-E	265	245	60	4
	210	115	60	4
85.5-E	180	80	60	4
	185	90	60	4
	170	65	60	4
	180	55	60	4
	210	120	60	4

280	290	60	4
215	190	60	4
240	185	60	4
285	365	60	4
310	380	60	4
255	235	60	4
225	150	60	4
200	120	60	4
250	225	60	4
165	70	67	5
215	145	67	5
230	180	67	5
220	155	67	5
115	10	67	5
95	10	67	5
105	20	67	5
95	8	67	5
105	15	67	5
100	18	67	5
145	20	67	5
110	20	67	5
160	30	67	5
95	8	67	5
110	10	72	6
110	10	73	6
100	15	83	6
105	15	80	8
105	10	82	8
100	10	85	8
155	30	72	8
115	20	25	8
105	18	70	5
95	10	70	5
110	20	70	5
110	10	70	5
100	10	70	5
120	20	70	5
125	25	70	5
125	25	70	5
125	20	70	5
135	30	70	5
90	10	70	5
100	10	70	5
105	10	70	5
110	25	70	5
100	8	63	6
110	35	83	6

105	30	74	6
135	45	75	6
120	28	67	6
104	10	62	5
42	2	71	6
		65	6
		70	6
		77	8
		75	8
		87	8
		80	8
		81	8
		86	8
		72	6
		84	8
		80	5
		84	7
		80	5
		91	8
		80	7
		84	8
		85	8
		88	8

length a	lass (MN	l) June-July	Septeml	ber Jui	ne-July
Perch collected in the Turners		0	0	0	
ant during 2015		25	0	0	0
Shit during 2015		50	0	0	0
		75	0	0	1
• •		100	0	1	1
		25	11	54	12
	1	150	29	20	41
••	1	175	7	20	48
	2	200	57	16	105
0,00	2	225	65	10	170
8 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m		250	38	4	208
Jobs	2	275	14	1	222
	3	300	8	0	230
200 250 300 350	400	325	5	0	235
Length (mm)	3	350	2	0	237
• Carte when	3	375	0	0	237
6 September	4	100	1	0	238
	4	125	0	0	238
	2	150	0	0	238
	2	175	0	0	238
	Ę	500	0	0	238

v perch gathered in the Turners ment during 2015

September

September	white sucker		June-Jul	у							
Station	Length	Weight	Station	Length	Weight						
68.7-G	480	1260	69.5-P	480	1300						
	415	950		485	1340		L	engt	ha	nd	W
	415	890		485	1500			·115		110	Ŧ
	394	680		500	1520						1
69.5-P	473	1120	69.9-E	530	1580	180	00 00				
70.5-E	420	1170		435	980	160	00				
	483	1200	71.1-P	465	1240	140	00				
	442	900		390	700	Di 120	00				
	450	1010		505	1660	100 E	00				
71.2-Е	395	630		520	1530	- 6 80	00				
76.1-P	393	710		495	1490	≥ 60	00				
	470	1160		405	880	40	00				
80.8-P	495	1090	72.9-Е	435	990	20	00				
	406	780		450	1070		0	•	00		DC
82.0-E	465	1370		430	920		0			100	
	470	1210		430	1080						
84.3-G	404	800		435	950						
84.3-P	487	1260		425	920						
85.2-P	495	1280		460	1080						
	451	1080	73.9-Е	390	850			т		.1	C
	460	1150		370	600			L	eng	th-	fre
	502	1310		475	1250						
	444	1000		395	680		50				
	456	1100	74.3-P	475	1230		45				
	430	910		460	1080		40		Ł		
87.0-P	386	720	76.2-E	445	800		35		÷		
	132	25		265	270		Sup 30		E		
	100	20		280	280		anb: 25		t		
	118	20		160	45		97 50 H		t		
	109	15		130	30		15		E		
	112	20		175	40		10				
	102	15		290	280		5			-	
	74	10		330	420		0	25	50	75	10
	120	25		35	3.6						
	105	20		35	3.6						
	83	10		35	3.6						
	91	10		35	3.6						
	91	10		35	3.6						
	95	10		35	3.6						
	111	12		35	3.6						
	94	10		35	3.6						
	112	15		35	3.6						
	122	20		35	3.6						
	271	220		35	3.6						
	226	250		35	3.6						

27	76 240	35	3.6
10	01 10	35	3.6
1	19 20	35	3.6
20	04 80	35	3.6
10	05 12	35	3.6
10	05 12	35	3.6
11	11 15	35	3.6
10	03 10	35	3.6
11	16 15	35	3.6
11	13 20	35	3.6
10	03 10	35	3.6
12	23 20	35	3.6
33	15 390	35	3.6
15	55 50	35	3.6
13	33 30	35	3.6
11	13 20	35	3.6
-	72 4	35	3.6
8	82 6	35	3.6
9	90 8	35	3.6
(95 8	35	3.6
		35	3.6
		25	20

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
55 25	3.0
25	3.0
35	3.0
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
----------	-----
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
55 25	3.0
25	3.0
35	3.0
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
55 25	3.0
25	3.0
35	3.0
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
55 25	3.0
25	3.0
35	3.0
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
25	2.6
35	3.0
55 25	5.0
35	3.0
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
500	<mark>1400</mark>
490	<mark>1390</mark>
510	<mark>1430</mark>
440	1050 <mark>-</mark>
480	<mark>1280</mark>
430	<mark>940</mark>
500	<mark>1380</mark>
485	<mark>1300</mark>
480	<mark>1230</mark>
465	1080
385	670
435	870
380	700
165	50
210	120

00 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 Total Length (mm) ■ June-July ■ September

June-July		September	
Length	Weight	Length	Weight
480	1300	480	1260
485	1340	415	950
485	1500	415	890
500	1520	394	680

530	1580	473	1120
435	980	420	1170
465	1240	483	1200
390	700	442	900
505	1660	450	1010
520	1530	395	630
495	1490	393	710
405	880	470	1160
435	990	495	1090
450	1070	406	780
430	920	465	1370
430	1080	470	1210
435	950	404	800
425	920	487	1260
460	1080	495	1280
390	850	451	1080
370	600	460	1150
475	1250	502	1310
395	680	444	1000
475	1230	456	1100
460	1080	430	910
445	800	386	720
265	270	132	25
280	280	100	20
160	45	118	20
130	30	109	15
175	40	112	20
290	280	102	15
330	420	74	10
35	3.6	120	25
35	3.6	105	20
35	3.6	83	10
35	3.6	91	10
35	3.6	91	10
35	3.6	95	10
35	3.6	111	12
35	3.6	94	10
35	3.6	112	15
35	3.6	122	20
35	3.6	271	220
35	3.6	226	250
35	3.6	276	240
35	3.6	101	10
35	3.6	119	20
35	3.6	204	80
35	3.6	105	12
35	3.6	105	12

35	3.6	111	15
35	3.6	103	10
35	3.6	116	15
35	3.6	113	20
35	3.6	103	10
35	3.6	123	20
35	3.6	315	390
35	3.6	155	50
35	3.6	133	30
35	3.6	113	20
35	3.6	72	4
35	3.6	82	6
35	3.6	90	8
35	3.6	95	8
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.6		
35	3.0		
35	3.6		
35 25	3.D		
35 25	3.0		
35 25	3.D		
35 25	3.D 3.C		
22 25	3.D 3.C		
ວວ ວ⊑	3.D 3.C		
35	3.0		

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.0
30 25	3.0
33 25	3.0 2.6
55 25	ס.כ סב
25 25	ס.כ סב
32	ס.כ 2 ב
32	5.0 2.6
35	2.0 2.6
35	3.0
55	5.0

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.0
30 25	3.0
33 25	3.0 2.6
55 25	ס.כ סב
25 25	ס.כ סב
32	ס.כ 2 ב
32	5.0 2.6
35	2.0 2.6
35	3.0
55	5.0

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.0
30 25	3.0
33 25	3.0 2.6
55 25	ס.כ סב
25 25	ס.כ סב
32	ס.כ 2 ב
32	5.0 2.6
35	2.0 2.6
35	3.0
55	5.0

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.0
30 25	3.0
33 25	3.0 2.6
55 25	ס.כ סב
25 25	ס.כ סב
32	ס.כ 2 ב
32	5.0 2.6
35	2.0 2.6
35	3.0
55	5.0

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
500	1400
490	1390
510	1430
440	1050
480	1280
430	940
500	1380
485	1300
480	1230
465	1080
385	670
435	870
380	700
165	50
210	120

September	June-July
0	0
0	277
2	277
11	277
31	277
33	278
34	281
34	281
35	282
36	282
37	283
38	285
39	285
39	286
39	287
43	292
48	294
52	304
59	310
64	321

bypass rea	ich			
Length	Weight	length class (MM)		
410	950	200	0	0
380	740	225	0	0
447	950	250	0	0
426	810	275	0	0
412	780	300	1	1
409	810	325	0	1
431	940	350	0	1
410	880	375	0	1
480	1240	400	2	3
419	915	425	5	8
440	1040	450	4	12
385	650	475	0	12
291	300	500	1	13
	bypass rea Length 410 380 447 426 412 409 431 410 480 419 440 385 291	VerightVeright410950380740380740447950426810412780409810431940432940434940435650385650291300	bypass reachlength class (MM)Length95020041095020038074022544795025042681027541278030040981032543194035041088037548012404004199154254401040450385650475291300500	bypass reachlength class (MM)Length9502000380740225044795025004268102750412780300140981032504319403500410880375041091542554401040450438565047502913005001

Length Weight

September	walleye
-----------	---------

June-July		September	
Length	Weight	Length	Weight
400	510	530	1440
22	5 100	302	422
420) 620	148	30
21	5 100	375	450
38	5 470	256	120
230) 100	146	25
21	5 85	256	120
480) 870	146	25
395	5 560		
170) 50		
240) 110		
24	5 140		
190) 50		
220) 90		
210) 110		
23	5 90		
31	5 140		
190) 80		
170) 50		
240) 110		
24	5 140		
190) 50		
220) 90		
210) 110		
23	5 90		
31	5 140		
190	0 80		

June-July	June-July September			
Length	Weight	Length	Weight	
315	400	349	540	
410	880	336	620	
345	520	173	65	
50	2	147	45	
50	4	173	60	
25	1	215	250	
45	2	122	15	
		99	10	
		115	20	
		105	12	
		78	10	
		133	30	
		92	10	
		103	10	
		105	12	

70	6
65	6
67	6
83	9
73	8
77	8
67	7

length clas:	Septembe	r June-July	Sept	June-July
25	0	1	0	1
50	0	3	0	4
75	7	0	7	4
100	12	0	19	4
125	15	0	34	4
150	12	0	46	4
175	3	0	49	4
200	0	0	49	4
225	1	0	50	4
250	0	0	50	4
275	0	0	50	4
300	0	0	50	4
325	0	1	50	5
350	2	1	52	6
375	0	0	52	6
400	0	0	52	6
425	0	1	52	7

Turners

: Turners

Jun	e-July	Septe	ember		
Length	Weight	Length	Weight		
160) 100	165	80		
135	5 50	164	90		
155	5 75	182	110		
125	5 40	192	150		
150) 70	205	160		
180) 100	201	150		
160)	Lengt	h and we	ight of blues	ill sunfish colle
165	5	0		Falls Impour	, idment during ?
120)		-		
125	300				
125	250)			
170)				
145	5 (a) ²⁰⁰)			
150) <u> </u>)			
160) <pre></pre>				
160) > 100)			•••••••••••••••••••••••••••••••••••••••
120)				Ø, <mark>ä</mark>
170)			O	
200) 0)	0 000 000 0	b b	.
140)	0	50	100	150
195	5			Т	otal Length (mm)
160)			Juna	July OSentember
160)			Julie	July Useptember
130) 70	214	200		
185	5 120	162	90		T 1 0
180) 60	183	150		Length-frequ
125	5 110	165	90		
160) 100	144	60	45 -	
155	5 80	143	65	40 -	
140) 50	178	115	35 -	
145	5 20	176	110	30 -	
145	5 70	170	100	Su 25 -	
125	5 110	130	45	onb; 20 -	
180) 120	127	45	9,20 H 15 -	
165	5 100	165	90	10	
1/5	b 100	157	/0	5	
180) 100	189	160	5 -	_
160	80	157	/0	0 -	25 50
130	y 45	162	90		
185	b 140	176	110		
120) 100	189	160		
190) 120	165	90		
160	0 80 co	165	90		
150	60	1/8	115		
180) 130	176	110		

160	85	170	100
200	160	165	90
155	70	165	90
140	60	185	125
160	90	178	110
185	120	175	100
180	140	199	200
130	30	189	130
120	40	192	150
130	40	203	200
150	70	190	140
160	90	192	150
140	70	153	70
155	80	143	50
150	80	206	215
140	50	122	35
155	70	182	120
160	100	176	110
185	120	155	70
160	195	181	115
180	150	177	115
165	190	180	110
180	160	212	240
190	145	177	110
190	160	170	100
180	110	176	130
175	120	142	60
165	110	165	90
160	100	183	120
180	150	185	130
195	160	177	110
165	110	184	130
1/5	120	185	150
195	125	203	190
140	45	213	220
185	100	200	200
140	60 70	181	110
145	70	205	230
100	90	225	250
170	110	206	100
1/5	110	200	100
120	75	211	200
160	00	211	200 0E
160	90 100	130 217	00 260
150	700	21/	200
150	00 100	223	200
122	100	205	200

175	130	133	40
100	150	215	250
190	150	215	200
190	160	218	200
190	150	212	230
200	240	202	240
185	185	95	10
175	135	97	20
195	150	95	20
205	180	110	35
110	30	110	35
50	3	110	35
45	3	110	20
		54	3
		47	2
		50	3
		59	6
		37	1
		37	1
		40	1
		30	1
		42	1

length class	Septembe	r June-July	Sept	June-July
25	0	0	0	0
50	7	2	7	2
75	2	0	9	2
100	3	0	12	2
125	6	10	18	12
150	14	23	32	35
175	26	39	58	74
200	36	29	94	103
225	19	1	113	104
250	0	0	113	104

September	Fallfish adult				
STATION		June	e-July	Septemb	er
		STATION Length	Weight	Length We	ight
		115	25	372	510
		180	70	334	350
		13		T	1 : - 1 - 4
		21		Length an	a weight of fall
		17			Impoundi
		15	800		
		21	700		
		28	600		
		26	500		
		21	nt (g		
		20	16 400		
			≥ 300		
		17	200		
		12	100		
		16	0		
		19	0	50	100 150 20
		13			1
		15			
		12			June
		180	70	245	130
		195	90	255	170
		175	60		
		115	30		Length-fr
		150	35		
		180	70	70	
		185	60		
		160	60	60	
		200	100	50	
		145	40	Su 40	
		170	50	due	
		430	760	5 30 5 30	
		180	70	20	
		210	110	10	
		200	100	0	
		190	95	0	25 50 75 100
		170	65		
		280	270		
		155	50		
		200	40 7	245	150
		90	/ _	243 1 <i>1</i> 7	30
		00 100	۲ ۲	136	20
		001	12	1/10	20
		50	12	140	50

75	10	146	30
105	15	153	30
100	10	158	40
100	20	158	40
100	12	241	140
110	15	239	130
95	8	232	120
110	12	223	120
110	20	236	130
95	15	135	25
105	10	133	25
115	20	167	40
105	10	131	25
90	8	152	30
90	8	135	20
90	8	159	40
90	8	187	60
105	15	153	40
105	8	159	40
100	10	166	50
100	10	144	30
75	6	166	45
73	10	138	25
73	10	166	40
73	10	150	30
73	10	128	20
73	10	151	30
73	10	221	130
73	10	216	100
105	10	216	100
75	6	216	100
75	6	216	100
75	6	165	40
75	6	135	20
75	6	150	30
75	6	140	30
75	6	152	30
75	6	235	120
75	6	137	25
/5	6	168	40
75	6	167	40
75	6	156	40
75	6	143	30
		161	40
		151	40
		160	40
		133	30
149	30		
-----	-----		
149	30		
145	30		
355	400		
240	150		
240	140		
251	150		
215	100		
225	100		
154	40		
147	30		
155	40		
148	30		
165	50		
226	115		
128	20		
213	100		
165	50		
173	50		
152	40		
172	50		
146	35		
170	50		
139	35		
146	30		
165	40		
144	30		
142	30		
172	50		
137	30		
126	20		
136	20		
142	20		
127	20		
140	20		
105	10		
126	15		
130	20		
127	20		
105	10		
118	15		
104	10		
128	20		
132	20		
119	15		
115	15		
143	20		

130	20
126	15
157	40
139	30
139	30
125	15
128	20
123	15
105	12
105	12
105	12
105	12
105	12
105	12
105	12
105	12
105	12
106	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15
117	15

117	15
117	15
110	12
110	12
110	12
100	10
113	10
122	15
111	10
115	15
113	15
122	15
121	15
122	30
131	20
127	20
67	3
70	4
68	3
68	4
81	5
/3	4
74	4
74	4
68	3
03 E0	3
59 70	2
70	с 2
56	2
50	2
68	3
70	2
68	3
65	3
65	3
68	3
70	3
68	3
70	3
70	3
70	3
70	3
70	3
70	3
70	3
70	3

70	3
65	3
62	3
65	3
81	4
76	4
84	4

equency of fallfish collected in the Turners Falls impoundment during 2015

Sept		June-July
	0	0
	0	0
	0	0
	22	34
	38	39
	50	99
	57	161
	65	204
	79	206
	83	216
	83	230
	84	233
	86	233
	86	233
	86	234
	86	237
	86	237
	86	239
	87	239
	87	239

303	330	230	160	168	50
168	50	240	210	180	70
180	70	245	200	181	65
181	65	260	230	163	50
163	50	275	300	170	65
170	65	270	270	166	55
166	55	260	235	184	80
184	80	230	170	178	70
178	70	310	360	171	70
171	70	255	210	160	55
160	55	280	290	287	250
287	250	270	250	160	50
160	50	270	300	220	120
220	120	275	300	325	450
325	450	290	300	320	430
320	430	265	150	162	50
162	50	470	1315	162	50
162	50	280	310	180	80
180	80	350	640	162	50
162	50	240	220	412	810
412	810	345	510	177	70
177	70	210	160	197	80
197	80	230	180	195	100
195	100	240	210	175	65
175	65	210	160	177	65
177	65	240	200	161	50
161	50	1/5	80	205	100
205	100	240	190	3/3	560
3/3	560	425	860	458	1200
458	1200	340	520	379	/30
379	/30	260	280	412	850
412	850	230	200	286	300
286	300	245	220	380	600
380	600	245	205	352	500
352	500	250	230	327	420
327	420	225	150	306	350
205	250	190	200	295	120
295	120	240	200	219	120
219	120	290	260	205	170
165	50	280	200	105	20
196	80	415	960	166	50
166	50	410	200	165	50
165	50	202	200 //10	105 170	50 270
420	870	210	410 125	420 270	570
370	550	210	1150	208	220
308	330	440 280	250	285	520 270
500	520	200	550	200	210

285	270	225	195	299	3
299	300	240	220	382	7
382	705	255	245	330	4
330	420	420	960	279	2
279	240	305	390	301	3
301	300	265	255	273	2
273	240	300	410	232	1
232	160	345	560	274	2
274	240	270	265	242	1
242	180	375	650	168	-
168	50	225	150	108	
108	15	225	160	86	
86	10	223	195	159	
159	45	200	140	100	
100	10	120	25	92	
92	12	95	15	85	
85	10	35 110	12	157	
157	45	110	12 20	150	
150	45	120	20 12	102	
102	10	95	15	120	
120	30	95	10	1/2	
1.79	20	95	10	140	
140	10	100	10	105	
105	20	110	12	1/0	
140	40	100	12	149	
149	40	90	10	145	
145	40	115	20	140	
140	20	115	20	142	
142	10	110	15	110	
02	10	93	10	92 145	
92 145	20	90	12	145	
145	30	105	15	142	
142	25	100	10	142	
142	10	110	12	90 140	
90	20	120	45	149	
149	30	110	15	145	
145	30	100	15	112	
112	40	110	30	113	
113	20	95	20	92	
92	10	105	15	127	
127	20	130	28	14/	
147	40	120	20	139	
139	30	110	15	106	
106	15	110	15	100	
100	12	125	45	89	
89	10	135	45	152	
152	50	95	25	103	
103	15	125	50	103	

103	10	105	30	98	10
98	10	110	25	148	30
148	30	90	15	151	30
151	30	95	10	94	10
94	10	80	5	96	10
96	10	105	10	97	10
97	10	105	15	105	12
105	12	90	20	102	12
102	12	110	25	100	10
100	10	100	25	103	12
103	12	115	30	92	10
92	10	105	18	150	30
150	30	115	25	145	40
145	40	100	20	152	50
152	50	95	18	93	10
93	10	105	22	95	10
95	10	95	20	143	40
143	40	100	20	145	50
145	50	110	22	156	50
156	50	95	12	113	20
113	20	105	18	102	15
102	15	110	20	150	50
150	50	120	20	156	50
156	50	95	15	158	50
158	50	90	15	112	20
112	20	100	18	156	50
156	50	115	35	142	45
142	45	95	15	105	15
105	15	110	30	100	12
100	12	100	22	86	10
86	10	130	40	151	40
151	40	80	10	148	35
148	35	80	10	106	10
106	10	95	15	100	10
100	10	95	15	91	10
91	10	90	15	107	12
107	12	120	20	98	10
98	10	120	22	96	10
96	10	85	10	153	50
153	50	105	20	107	20
107	20	95	12	121	30
121	30	90	10	145	30
145	30	105	15	156	50
156	50	110	20	107	20
107	20	110	20	100	15
100	15	100	15	100	15
100	15	80	12	97	15

97	15	115	25	101	15
101	15	90	12	106	15
106	15	110	20	95	15
95	15	110	20	108	15
108	15	95	15	111	20
111	20	120	30	91	10
91	10	110	15	95	10
95	10	105	12	88	10
88	10	125	20	94	12
94	12	105	20	87	10
87	10	115	20	90	10
90	10	105	20	97	12
97	12	110	20	85	10
85	10	110	10	90	10
90	10	110	20	102	20
102	20	130	40	90	10
90	10	110	15	109	15
109	15	105	20	118	20
118	20	85	10	100	10
100	10	145	20	153	50
153	50	140	30	89	10
89	10	95	10	152	50
152	50	100	8	106	15
106	15	100	10	155	50
155	50	125	30	95	10
95	10	90	7	112	20
112	20	95	10	100	10
100	10	120	40	89	10
89	10	120	40	95	10
95	10	150	50	94	10
94	10	100	10	100	10
100	10	100	12	109	15
109	15	110	20	93	10
93	10	110	25	150	40
150	40	110	35	120	20
120	20	95	28	101	10
101	10	140	55	95	10
95	10	90	28	112	10
112	10	115	25	115	20
115	20			104	15
104	15			96	10
96	10	115	25	92	10
92	10	100	10	100	10
100	10	95	25	158	40
158	40	100	10	153	30
153	30	80	10	90	10
90	10	110	30	153	40

153	40	115	1
107	10	105	15
96	10	95	20
155	50	35	2
92	10	45	1
146	40		
94	10		
103	12		
106	12		
90	10		
102	10		
90	10		
93	10		
101	10		
138	30		
95	10		
105	10		
101	10		
150	40		
150	40		
150	40		
150	40		
107	10		
118	20		
98	10		
111	20		
102	10		
105	12		
95	10		
107	15		
107	12		
105	10		
90	10		
153	40		
107	10		
146	40		
155	50		
92	10		
146	40		
146	40		
92	10		
146	40		
130	30		
146	40		
146	40		
157	50		

110	10
150	40
155	50
112	20
92	10
105	15
107	20
95	10
93	10
100	12
97	10
92	10
106	12
105	20
97	10
95	10
107	20
151	50
67	4
60	4
74	6
90	8
65	6
75	8
77	8
75	8
60	5
78	8
85	6
88	8
87	8
63	5
110	12
110	12
110	12
110	12
110	12
110	12
110	12
110	12
110	12
110	12
110	12
110	12
110	12
75	2
78	0 8
/0	0

74	
83 8	8
83 8	8
58	5
72	7
67	, л
07 2	4
90 8	8
80 8	8
29 5	5
89 8	8
80 8	8
91 8	8
91 8	8
91	5
01 0	с с
91 0	ŏ
91 8	8
91 8	8
91 8	8
91 8	8
91 8	8
91 9	8
91	8
01 0	0
91 0	0
91 8	8
91 8	8
91 8	8
90 8	8
90 8	8
73	5
80 8	8
80	8
80	2
80 0	0
80 8	0
80 8	8
80 8	8
80 8	8
80 8	8
80 8	8
80 8	8
80 8	8
80 8	8
80	8
80	Q
	0
80 8	0
80 8	8
80 8	8
80 8	8

80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
80	8	
86	7	
80	7	
75	5	
87	8	
81	8	

length clas:Ju	ne-July	September	June-July	September
0			0	0
25	0	0	0	0
50	0	1	0	1
75	2	15	2	16
100	0	141	2	157
125	55	71	57	228
150	65	41	122	269
175	8	55	130	324
200	2	17	132	341
225	6	6	138	347
250	27	11	165	358
275	26	6	191	364
300	18	10	209	374
325	10	7	219	381
350	6	2	225	383
375	5	4	230	387
400	1	4	231	391
425	0	3	231	394
450	3	0	234	394
475	1	1	235	395
500	1	0	236	395

e Turnes

500

96	10
118	15
105	10
101	10
132	25
130	25
118	20
115	20
125	20
107	12
110	10
95	10
108	10
108	12
100	10
110	12
101	10
105	10
92	10
139	20
111	10
03	10
92	10
120	20
93	10
75	10
136	30
114	15
125	18
115	12
126	18
106	12
115	20
81	10
112	12
113	15
85	10
155	50
111	20
94	10
118	20
115	12
115	12
115	12
115	12
115	12

115	12
115	12
115	12
115	12
115	12
115	12
115	12
115	12
115	12
115	12
115	12
85	10
90	10
111	15
109	15
100	10
122	20
64	10
158	50
156	40
116	20
120	12
155	50
88	10
110	15
106	15
105	12
103	10
120	20
103	10
117	20
115	20
90	01
0U 7E	ð o
75 72	ð o
7.5 80	o Q
00 Q1	0 Q
82 10	0 Q
02 72	o Q
76	٥ و
66	5
78	2
80	8
72	8
70	8
60	6
	-

67	8
55	6
63	7
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
65	8
72	6
85	8
72	8
68	8
78	8
68	8
71	8

length class bypass		bypass
50	0	0
75	36	36
100	25	61
125	58	119
150	5	124
175	14	138
200	19	157
225	1	158
250	5	163
275	0	163
300	3	166
325	2	168
350	0	168
375	0	168
400	0	168
425	0	168
450	0	168
475	0	168
500	0	168

0 425 450 475 500

September	American shad				
Length	Weight				
87	8				
95	9				
85	8				
95	10				
83	8				
85	8				
84	8				
73	6				
80	6				
87	8				
87	8				
80	8				
81	8				
87	8				
80	8		т .1	с с	· · · · · · · · · · · · · · · · · · ·
81	8		Length	frequency of	American shad collected
85	8			Falls 11	mpoundment during 2015
93	8	80 —			
83	8	70 —			
87	8	60 -			
84	8	00 -			
101	10	6 50 –			
76	8	anbo 40 -			
67	7	й 30 —			
81	8	20 —			
98	10	10 —			
77	8	10			
95	10	0 —	25	50	75
95	10		20	20	Total Length (mm)
77	8				
95	10				September
82	8				
72	7				
82	8				
103	10				
100	10				
95	10				
101	10				
92	10				
80	5				
68	5				
80	5				
85	7				
78	5				

8
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
10
12
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
10

length class (MM) June-July	September S	Sept
25	0	0
50	0	0
75	5	5
100	73	78
125	4	82

Length and weig

ght of Ame alls Impou	erican shad co ndment durir	ollected in t ng 2015	he Turners	
			000000)
	0		0	
	0	0 0 00	0	
40	60	80	100	120
10	Total Length (mm))	100	120
	• September			
80	8			
81	8			
85	8			
93	8			
83	8			
87	8			
84	8			
101	10			
76	8			
67	7			
81	8			
98	10			
77	8			
95	10			
95	10			
77	8			
95	10			
82	8			
72	7			
82	8			
103	10			
100	10			

95	10
101	10
92	10
80	5
68	5
80	5
85	7
78	5
74	8
91	6
91	6
91	6
91	6
91	6
91	6
91	6
91	6
91	6
91	6
91	6
91	6
91	6
91	6
91	6
97	10
110	12
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
92	7
93	10

September	American e	el Ji	une-Jul	ly	Septe	mber
Length	Weight	Length	We	eight	Length	Weight
70	0 720	8	335	1200	700	720
750	D 720	g	920	1400	750	720
550	0 410	Z	20	160	550	410
250	D 80	7	750	700	250	80
		7	/50	600		
		7	750	600		
		8	340	950		
		2	250	80		

length clas:June	e-July Sept	tember Jun	e-July Sept	tember	Septemb	er	
200	0	0	0	0	Length	Weight	Length clas
225	0	0	0	0	49	0 250	100
250	0	1	0	1	38	<mark>80 180</mark>	125
275	1	0	1	1	26	i <mark>0 40</mark>	150
300	0	0	1	1	30	0 50	175
325	0	0	1	1	16	i <mark>0 10</mark>	200
350	0	0	1	1	16	i <mark>0 10</mark>	225
375	0	0	1	1	14	0 10	250
400	0	0	1	1	67	<mark>'0 430</mark>	275
425	0	0	1	1	33	<mark>0 50</mark>	300
450	1	0	2	1	30	0 35	325
475	0	0	2	1	35	i <mark>0 35</mark>	350
500	0	0	2	1	33	<mark>0 35</mark>	375
525	0	0	2	1	36	60 60	400
550	0	1	2	2	25	0 25	425
575	0	0	2	2	19	0 25	450
600	0	0	2	2	12	.0 8	475
625	0	0	2	2	12	.0 8	500
650	0	0	2	2	12	.0 8	
675	0	0	2	2	14	5 5	
700	0	1	2	3	16	i0 5	
725	0	0	2	3	13	6 5	
750	0	1	2	4	11	.0 4	
775	3	0	5	4	14	0 6	
800	0	0	5	4	15	i0 6	
825	0	0	5	4	14	56	
850	0	0	5	4	15	0 10	
875	2	0	7	4			
900	0	0	7	4			We
925	0	0	7	4	500		
950	1	0	8	4	450		
975	0	0	8	4	400		
1000	0	0	8	4	350		
					300		
					250		
					250		

 8.

		S	mallmo	uth Bass			
	А		В	l .	Y		ŀ
River Code Lo	ength V	Veight	Length	Weight Length	Weight	River Code I	.ength
69.5-P	240	160	120	25		69.5-P	480
	210	130	95	15			485
							485
71.1-P	225	150					500
	180	80					
						69.9-E	530
72.9-E	220	145	110	12			435
	290	370	120	20			
	275	250	95	12		71.1-P	465
	310	400	95	15			390
	190	100	95	18			505
	220	150	100	18			520
	200	100	110	12			495
	250	200	100	12			405
	225	150	90	10			
	220	150	115	12		72.9-E	435
	230	150	115	20			450
	235	170	110	15			430
	270	235	95	15			430
	200	200	90	12			435
	215	130	105	15			425
	170	70	100	10			460
			110	15			
			120	45		73.9-E	390
			110	15			370
			100	15			475
			110	30			395
			95	20			
			105	15		74.3-P	475
							460
73.9-E	250	210	130	28			
	230	170	120	20			
	295	350	110	15		76.2-E	445
	250	235	110	15			
	240	190	125	45		77.6-S	
	270	235	135	45			
			95	25			
			125	50			
			105	30			
			110	25			
			90	15			
74.2 0	225	100	05	10			
/4.3-7	223	13U	25	E TO			
	210	112	00	J			

	220	160	105	10		
	220	155	105	15		
	215	140	90	20		
	220	150	110	25		
	255	220	100	25		
	210	160	115	30		
	310	365	105	18		
	225	180	115	25		
	225	140	100	20		
			95	18		
			105	22		
			95	20		
			100	20		
			110	22		
			95	12		
			105	18		
			110	20		
			120	20		
			95	15		
			90	15		
			100	10		
			115	25		
			112	55 1E		
			95	15		
			110	30		
			100	22		
76 2-F	210	110	130	40	35	
, 0.2 L	220	145	80	10	33	
	210	120	80	10		
	210	210	00 05	15		
	200	210	05	15		
	230	170	90	15		
	240	150	120	20		
	230	150	120	20		
	220	400	120	10		
	230	210	65 105	20		
	240	210	105	20		
	245	200	95	12		
	260	230	90	10		
	275	300	105	15		
	270	270	110	20		
	260	235	110	20		
	230	170	100	15		
			80	12		
			115	25		
			90	12		
	.				. –	
80.1-P	310	360	110	20	45	

	255	210	110	20
	280	290	95	15
	270	250	120	30
	270	300	110	15
	275	300	105	12
	290	300	125	20
	250	150	105	20
	205	150	115	20
			105	20
			110	20
82 0-F	170	1215	110	10
02.0-L	280	210	110	20
	200	640	120	20
	240	220	110	40
	240	220 E10	105	20
	545 210	160	102	20
	210	100	60 145	20
	230	180	145	20
	240	210	140	30
	210	160	95	10
	240	200	100	8
	1/5	80	100	10
			125	30
			90	/
			95	10
84 0-F	240	190	120	40
04.0 L	240 425	860	120	40
	340	520	150	50
	260	280	100	10
	200	200	100	12
	230	200	100	12
	245	220		
	245	205		
	230	150		
	100	20		
	150	80		
84.5-E	240	200	110	20
	290	320	110	25
	280	360	110	35
	305	380	95	28
	415	960	140	 55
	235	200	90	28
	305	410	115	25
	210	125		
	*			
85.5-E	440	1150	115	25
	280	350	100	10

225	195	95	25
240	220	100	10
255	245	80	10
420	960	110	30
305	390	115	15
265	255	105	15
300	410	95	20
345	560		
270	265		
375	650		
225	150		
225	160		
200	195		
225	140		

80.1-P	500
	490
	510
	440
82.0-E	480
	430
	500
84.5-E	485
	480
	465
	385

85.5-E 435 380

	White	Sucker						Yellow
1		В		Y			Α	E
Weight	Length	Weight	Length	Weight		River Code Length	Weight	Length
1300	290	300		40	2	69.5-P 190	0 80	115
1340	280	250				18	5 70	95
1500						250) 190	105
1520						180) 60	95
						170) 40	105
1580						160) 60	100
980						17	5 70	145
						210	0 100	110
1240						180	0 80	160
700						19	5 100	95
1660						190) 90	110
1530						170	0 60	110
1490						17	5 70	100
880						180) 70	
						16	5 50	
990	265	270				230) 160	
1070	280	280				190	0 80	
920	160	45				21	5 120	
1080						210) 120	
950						160) 45	
920						17:	5 70	
1080						21	5 110	
						200) 90	
850	130	30				20	5 110	
600						20	5 90	
1250						16	5 50	
680						180) 75	
						17	5 65	
1230	175	40				150) 50	
1080	290	280				210) 110	
	330	420				120) 70	
						165	5 60	
800						14	5 30	
						165	5 50	
				35	3.6	25	5 190	
				35	3.6	17	5 70	
				35	3.6	220	0 140	
				35	3.6	19	5 100	
				35	3.6	19	5 70	
				35	3.6	210	0 100	
				35	3.6	18	5 60	
				35	3.6	19	5 80	
				35	3.6	270) 230	
				35	3.6	17	5 70	

35	3.6		185	70	
35	3.6		180	70	
35	3.6		210	100	
35	3.6		155	50	
35	3.6		205		
35	3.6		160	50	
35	3.6		175	90	
35	3.6		155	60	
35	3.6		160	50	
35	3.6		195	70	
35	3.6		105	15	
35	3.6		180	70	
35	3.6		200	90	
35	3.6		165	70	
35	3.6		205	100	
35	3.6		165	70	
35	3.6				
35	3.6	69.6-VS	175	60	105
35	3.6		180	80	
35	3.6		155	50	
35	3.6		180	70	
35	3.6		125	100	
35	3.6		190	80	
35	3.6		190	90	
35	3.6		125	20	
35	3.6		195	100	
35	3.6		230	160	
35	3.6		215	120	
35	3.6		240	180	
35	3.6		160	60	
35	3.6		180	70	
35	3.6		185	95	
35	3.6		165	65	
35	3.6		180	75	
35	3.6		215	125	
35	3.6		175	80	
35	3.6		200	100	
35	3.6		170	65	
35	3.6				
35	3.6	69.9-E	170	65	105
35	3.6		170	70	
35	3.6		180	90	
35	3.6		195	100	
35	3.6		205	100	
35	3.6		255	200	
35	3.6		205	100	
35	3.6		170	70	

35	3.6		195	90	
35	3.6		190	90	
35	3.6		180	70	
35	3.6		200	100	
35	3.6		360	420	
35	3.6		120	30	
35	3.6		240	175	
35	3.6		225	120	
35	3.6		180	75	
35	3.6		125	50	
35	3.6		195	80	
35	3.6				
35	3.6	70.1-VS	200	120	100
35	3.6		165	60	155
35	3.6		195	90	
35	3.6		190	85	
35	3.6		165	60	
35	3.6		250	210	
35	3.6		175	60	
35	3.6		205	120	
35	3.6		175	145	
35	3.6		165	40	
35	3.6		165	50	
35	3.6		195	80	
35	3.6		235	150	
35	3.6		160	40	
35	3.6		180	60	
35	3.6		160	40	
35	3.6		235	150	
35	3.6		210	100	
35	3.6				
35	3.6	71.1-P	170	75	115
35	3.6		185	80	105
35	3.6		200	100	95
35	3.6		190	95	
35	3.6		170	70	
35	3.6		180	70	
35	3.6		210	110	
35	3.6		160	50	
35	3.6		210	100	
35	3.6		180	80	
35	3.6		210	110	
35	3.6		190	85	
35	3.6		185	70	
35	3.6		260	200	
35	3.6		195	100	
35	3.6		295	270	

35	3.6		225	150	
35	3.6		260	200	
35	3.6		220	140	
35	3.6		165	70	
35	3.6		170	50	
35	3.6		160	40	
35	3.6		245	160	
35	3.6		160	60	
35	3.6		215	110	
35	3.6		170	70	
35	3.6		190	85	
35	3.6		200	85	
35	3.6		170	65	
35	3.6		165	55	
35	3.6		210	120	
35	3.6		150	45	
35	3.6		180	20	
35	3.6		180	70	
35	3.6		160	40	
35	3.6				
35	3.6	72.9-E	150	50	110
35	3.6		180	70	
35	3.6		235	150	
35	3.6		265	240	
35	3.6		120	50	
35	3.6				
35	3.6	73.9-E	200	95	110
35	3.6		185	80	100
35	3.6		190	95	
35	3.6		185	70	
35	3.6		190	105	
35	3.6		210	110	
35	3.6				
35	3.6	74.3-P	230	170	120
35	3.6		210	115	
35	3.6		210	120	
35	3.6		170	70	
35	3.6		160	60	
35	3.6		165	60	
35	3.6				
35	3.6	76.2-E	295	350	
35	3.6				
35	3.6	77.6-S			
35	3.6				
35	3.6	80.1-P	200	95	125
35	3.6		210	120	125
35	3.6				125

35	3.6				135
35	3.6				90
35	3.6				100
35	3.6				
35	3.6	82.0-E	310	440	105
35	3.6		220	160	110
35	3.6		195	100	100
35	3.6				
35	3.6	84.0-E	300	400	
35	3.6		170	60	
35	3.6		220	145	
35	3.6				
35	3.6	84.5-E	265	245	110
35	3.6		210	115	105
35	3.6				135
35	3.6				
35	3.6	85.5-E	180	80	120
35	3.6		185	90	104
35	3.6		170	65	
35	3.6		180	55	
35	3.6		210	120	
35	3.6		280	290	
35	3.6		215	190	
35	3.6		240	185	
35	3.6		285	365	
35	3.6		310	380	
35	3.6		255	235	
35	3.6		225	150	
35	3.6		200	120	
35	3.6		250	225	
35	3.6		165	70	
35	3.6		215	145	
35	3.6		230	180	
35	3.6		220	155	
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				
35	3.6				

35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
25	3.0
22	3.0
22	5.0 2.6
22	2.0
22	2.0
33 25	5.0 2.C
30 25	3.0
30 25	3.0
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6
35	3.6

			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
			35	3.6
1400	165	50	35	1
1390				
1430				
1050				
1280	210	120		
940				
1380				
1300				
1230				
1080				
670				
-				

[,] Perch			Fallfish					
3	Y			Α		I	В	١
Weight I	Length Weig	ht	River Code Lengt	n V	Weight	Length	Weight	Length
10	42	2	71.1-P			90	7	
10						80	5	
20								
8			73.9-E	115	25			
15								
18			74.3-P	180	70	100	6	
20				130	30	90	12	
20				215	120	/5	10	
30				1/5	50			
8				155	45	105	15	
10			/0.2-E	100 215	45 115	105	10	
10				212	240	100	20	
15				265	240	100	12	
				205	110	100	12	
				200	90			
				200	50			
			77.6-S	97	10			
			80.1-P	170	60	110	15	
				140	30	95	8	
				180	60	110	12	
				190	90	110	20	
				190	80	95	15	
				135	25	105	10	
				150	30	115	20	
				145	30	105	10	
				180	70			
				195	90			
				175	60			
			82.0-E	115	30	90	8	
				150	35	90	8	
				180	70	90	8	
				185	60	90	8	
				160	60	105	15	
				200	100	105	8	
				145	40			
				1/0	50			
			84.0-E	430	760	100	10	
						100	10	
						75	6	

		84.5-E	180	70	73	10
			210	110	73	10
			200	100	73	10
			190	95	73	10
			170	65	73	10
			280	270	73	10
			155	50	73	10
		85.5-E	200	40	105	10
					75	6
					75	6
					75	6
					75	6
					75	6
					75	6
					75	6
					75	6
50	2				75	6
					75	6
					75	6
					75	6
					75	6

10	50	2
30	50	4

10 10		
20		
	42	2

20 45 5
	Walleye							
(Α	Α		В		Y	
Weight	River Code L	ength W	eight	Length	Weight	Length	Weight	
	69.5-P	400	510					
		225	100					
	69.6-VS	420	620					
	71.1-P	215	100	170	50)		
		385	470					
		230	100					
		215	85					
	74.3-P			240	110)		
	80.1-P			245	140)		
				190	50			
				220	90)		
	82.0-E			210	110)		
	84.0-E			235	90)		
				315	140			
	84.5-E			190	80)		
	85.5-E	480	870					
		395	560					

			Rock	bass				
	Α		B	6		Y		F
River Code Le	ength We	eight Le	ength	Weight	Length	Weight	River Code L	ength
69.5-P	175	100					69.5-P	160
	140	70						165
	145	60						190
	180	110						205
	140	60						160
								165
72.9-E	145	70	95	10)			
	135	50	80	10)		69.6-VS	165
	245	290	90	10)			180
			105	25	5			155
			80	12	<u>2</u>			200
			80	10)			165
			75	10)			150
			70	10)			185
			70	12	2			
			105	20)		69.9-E	150
			135	45	5			
							70.1-VS	180
73.9-E	220	200	80	8	3			165
	145	175	65	10)			170
			100	45	5			160
								180
74.3-P	160	70	120	45	5			185
76.2-E	240	280	95	20)		71.1-P	155
	160	80	115	35	5			160
	180	140	110	30)			140
	220	200						140
								165
80.1-P	165	60						150
								170
82.0-E	170	100						165
	195	190						180
	175	130						155
								165
84.0-E	215	210						165
	175	130						155
	-							165
84.5-E	250	320						165
	175	140						155
	190	170						
	200	1,0					73.9-F	200
85.5-E	195	170	100	3()			200
	150	85	110	31	5			

150	75	100	20
195	200	145	45
180	120	125	35
150	90		

	Pump	okinsee	d				Blue
1		В		Y	ŀ	4	E
Weight	Length	Weight	Length	Weight	River Code Length	Weight	Length
80)				69.5-P 160	100	
120	1				135	50	
160)				155	75	
180					125	40	
90					150	/0	
110					180	100	
110					160	90	
140					105	100	
140					120	50 110	
200					125	110	
200					123	100	
100					145	70	
120					143	70 80	
120					160	90	
90	1				160	70	
50					120	40	
110	1				170	100	
85					200	110	
115					140	50	
80	1				195	110	
120	1				160	90	
130	1				160	80	
					130	70	
90	7	'5	12		185	120	
90)				180	60	
70	1				125	110	
60)				160	100	
120	1				155	80	
85					140	50	
120)				145	20	
85					145	70	
160					125	110	
140					180	120	
110					105	100	
200					175	100	
80 110					180	00 100	
11U 11C					100	00 / E	
100					120	45 1 <i>1</i> 0	
100					103	100	
200)				120	120	
200					150	80	
					150	60	

	180	130
	160	85
	200	160
	155	70
	140	60
	160	90
	185	120
	180	140
	130	30
	120	40
	130	40
	150	70
	160	90
	140	70
	155	80
	150	80
	140	50
	155	70
	160	100
69.6-VS	185	120
	160	195
	180	150
	165	190
69.9-E	180	160
	190	145
	190	160
	180	110
	175	120
	165	110
	160	100
	180	150
	195	160
	165	110
	175	120
70.1-VS	195	125
	140	45
	185	100
	140	60
71.1-P	145	70
	160	90
	170	110
	175	110
	155	75

	130	50
	160	90
	160	100
	150	65
	155	100
73.9-E	175	130
	190	150
74.3-P	190	160
76.2-E	190	150
84.0-E	200	240
	185	185
85.5-E	175	135
	195	150
	205	180

egill			Largemouth Ba						ISS		
3		Υ		A	ι		В		١		
Weight	Length	Weight	River Code Ler	ngth	Weight	Length	Weight	Length			
			69.5-P	315	400	כ					
				410	880)					
			69.6-VS					5	0		
								5	0		
			71.1-P	345	520)		2	5		
								4	5		

American Shad

1		Α		В		Y
Weight	River Code Lengt	h Weight	Length	Weight	Length	Weight
	84.5-E	380 42	20			
2						

- 4
- +
- .
- 1 2
- Z
| | | | Ameri | can Eel | | |
|-------------------------|-----|--------|--------|---------|--------|--------|
| | | A | I | В | | Y |
| River Code Lengt | h | Weight | Length | Weight | Length | Weight |
| 73.9-E | 835 | 1200 | 420 | 160 | | |
| | 920 | 1400 | | | | |
| | | | | | | |
| 82.0-E | | | 750 | 700 | | |
| | | | | | | |
| 84.0-E | | | 750 | 600 | | |
| | | | | | | |
| 84.5-E | | | 750 | 600 | | |
| | | | 840 | 950 | | |

Aver Code LengthWeightBYNore Code LengthNore Code Length <th></th> <th></th> <th>Sm</th> <th>nallmout</th> <th>h Bass</th> <th></th> <th></th> <th></th> <th></th>			Sm	nallmout	h Bass				
River Code LengthWeightLengthWeightMengetRiver Code Length69.5-P2482001081568.7.6480183701594515541570.0-P175701594516031570.5-E2081503515035160122135150351707017970.5-E2073001393016016017055103101707071.2-E3073001393010173551504016016023212011310160160245150143351604202451551504042042024515515040420245155150404202451551504042024515515040420245155150404202451551532542016055961042016055150304016155150304016250113204016350127204016455160127401751601274040161 <th></th> <th>Α</th> <th></th> <th>В</th> <th></th> <th>Y</th> <th></th> <th></th> <th>F</th>		Α		В		Y			F
69.5-P 248 200 108 15 68.7-6 480 70.0-P 175 70 159 45 34 70.0-P 175 70 159 45 34 70.5-E 170 70 92 12 69.5-P 473 70.5-E 170 70 92 12 70	River Code L	ength We	eight Le	ength We	eight Leng	th Wei	ght	River Code L	ength
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69.5-P	248	200	108	15			68.7-G	480
70.0-P 175 70 159 45 69.5-P 473 70.5-E 170 70 92 12 69.5-P 473 70.5-E 170 70 92 12 69.5-P 473 70.5-E 170 75 150 35 100		183	70	86	10				415
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									415
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70.0-P	175	70	159	45				394
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100	10				
70.5-E 170 70 92 12 238 150 85 10 182 80 157 45 222 135 150 35 170 55 103 10 179 75 176 55 71.2-E 307 300 139 30 232 120 103 10 158 60 137 30 245 150 143 35 251 155 150 40 245 150 143 35 251 155 150 40 245 150 143 35 251 155 150 40 225 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 412 450 166 55 96 10 450 450 166 50 133 20 470<								69.5-P	473
238 150 85 10 182 80 157 45 222 135 103 10 179 75 10 10 71.2-E 307 300 139 30 210 148 30 70.0-P 215 150 143 35 215 155 150 40 225 130 110 12 225 130 110 12 225 130 110 12 236 160 92 10 70.5-E 420 232 155 133 25 442 442 230 150 142 30 71.2-E 393 166 55 96 10	70.5-E	170	70	92	12				
182 80 157 45 222 135 150 35 170 55 103 10 179 75 17 17 71.2-E 307 300 139 30 225 120 148 30 232 120 103 10 158 60 137 30 158 60 137 30 245 150 143 35 251 155 104 40 247 160 142 30 247 160 142 30 252 130 110 12 236 160 92 10 450 166 55 96 10 450 166 55 96 10 470 166 50 133 40 71.2-E 176 65 145 30 470 <td></td> <td>238</td> <td>150</td> <td>85</td> <td>10</td> <td></td> <td></td> <td></td> <td></td>		238	150	85	10				
122 135 150 35 170 55 103 10 179 75 103 10 176 55 103 10 176 55 103 10 176 55 103 10 1232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 150 251 155 150 40 427 247 160 142 30 483 235 155 133 25 442 230 100 12 450 160 50 149 30 71.2-E 395 176 65 145 30 470 470 1610 50 133 40 76.1-P 393 162 50 133		182	80	157	45				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		222	135	150	35				
179 75 176 55 71.2-E 307 300 139 30 225 120 148 30 323 300 158 60 137 30 303 30 158 60 137 30 300 70.0-P 245 150 143 35 70.0-P 245 150 143 35 70.5-E 420 247 160 142 30 442 442 236 160 92 10 70.5-E 420 247 160 142 30 442 442 230 110 12 442 450 450 166 55 96 10 442 450 450 166 55 96 10 450 450 450 166 55 96 10 470 470 470 166 50 113 20 470 470 165 50		170	55	103	10				
71.2-E 307 300 139 30 225 120 148 30 232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 70.0-P 245 150 143 35 70.0-P 245 150 142 30 70.5-E 420 225 130 110 12 70.5-E 420 236 160 92 70.5-E 420 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 71.2-E 393 166 55 96 10 470 470 162 50 113 20 470 470 163 50 92 10 470 470 470 163 50 127 20 470 470<		179	/5						
71.2-E 307 300 139 30 225 120 148 30 232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 70.149 247 160 142 30 70.5-E 420 247 160 142 30 70.5-E 420 272 240 145 30 483 325 442 236 160 92 10 70.5-E 420 272 240 145 30 450 453 166 55 96 10 450 450 166 55 96 10 470 470 163 50 113 20 470 470 163 50 92 10 71.2-E 393 466 165 50 113 20 70.1-E 470 173 60 </td <td></td> <td>1/6</td> <td>55</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1/6	55						
71.2-E 307 300 139 30 225 120 148 30 232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35	71 C E	207	200	120	20				
223 120 146 50 232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 50 251 155 150 40 70.0-P 245 130 110 12 70 236 160 92 10 70.5-E 420 236 160 92 10 70.5-E 420 236 160 92 10 70.5-E 420 236 150 142 30 483 235 155 133 25 442 230 150 142 30 71.2-E 393 166 55 96 10 71.2-E 393 162 50 133 40 76.1-P 393 165 50 113 20 470 470 173 60 127 20 80 495 406 <td>/1.Z-E</td> <td>307</td> <td>120</td> <td>139</td> <td>30</td> <td></td> <td></td> <td></td> <td></td>	/1.Z-E	307	120	139	30				
1252 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 10 247 160 142 30 70.5-E 420 225 130 110 12 483 483 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 10 10 166 55 96 10 10 10 10 166 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 470 406 173 60 127 20 406 406 76.1-P 286 100 12 </td <td></td> <td>225</td> <td>120</td> <td>148</td> <td>30</td> <td></td> <td></td> <td></td> <td></td>		225	120	148	30				
138 600 137 30 189 70 149 40 70.0-P 245 150 143 35 155 251 155 150 40 160 247 160 142 30 160 225 130 110 12 483 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 149 30 71.2-E 395 166 55 96 10 470 470 162 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 470 470 173 60 127 20 470 406 173 60 127 20 406 406 89 100 12 406 40		232	120	103	10				
183 70 143 40 70.0-P 245 150 143 35 150 40 247 160 142 30 10 12 10 143 40 1		156	70	140	30 40			70.0.0	
243 150 143 35 251 155 150 40 247 160 142 30 225 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 166 51 166 55 96 10 161 162 30 166 50 143 30 76.1-P 393 165 50 113 20 470 163 50 92 10 173 60 127 20 173 60 127 20 470 406 173 60 127 20 406 406 89 100 12 406 406 406 89 100 12 406 406		109	150	149	40 25			70.0-P	
231 153 150 40 247 160 142 30 225 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 166 55 166 50 149 30 71.2-E 395 176 65 145 30 470 393 165 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 173 60 127 20 406 173 60 127 20 406 406 406 406 89 100 12 406 406 406 406 89 100 12 406 406 406		245	150	145	35				
247 100 142 30 225 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 16 51 160 50 149 30 71.2-E 395 176 65 145 30 470 470 162 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 406 406 173 60 127 20 406 406 106 15 80.8-P 495 406 100 12 406 406 406 80 100 12 406 406 272 210 103 15 60 4 <td></td> <td>251</td> <td>155</td> <td>142</td> <td>40</td> <td></td> <td></td> <td></td> <td></td>		251	155	142	40				
223 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 50 160 166 55 96 10 50 133 40 71.2-E 393 162 50 133 40 76.1-P 393 470 163 50 92 10 470 470 470 163 50 92 10 470 406 50 406 173 60 127 20 406 50 406 470 106 15 80.8-P 495 406 406 470 106 152 50 67 4 470 406 26 260 152 50 67 4 470 272 210 103 <td></td> <td>247</td> <td>120</td> <td>142</td> <td>50 12</td> <td></td> <td></td> <td></td> <td></td>		247	120	142	50 12				
230 100 32 10 70.3-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 450 166 55 96 10 50 166 50 149 30 71.2-E 395 176 65 145 30 76.1-P 393 165 50 113 20 470 163 50 92 10 470 163 50 92 10 470 163 50 92 10 470 173 60 127 20 406 139 30 80.8-P 495 100 12 406 406 89 100 12 406 76.1-P 284 260 152 50 67 4 470 272 210 103<		225	160	02	12			70 F F	420
272 240 143 30 443 235 155 133 25 442 230 150 142 30 450 166 55 96 10 450 160 50 149 30 71.2-E 395 176 65 145 30 470 162 50 113 20 470 163 50 92 10 470 163 50 92 10 470 163 50 92 10 470 173 60 127 20 470 139 30 406 406 406 106 15 80.8-P 495 100 12 406 406 89 10 12 406 76.1-P 284 260 152 50 67 4 470 229 150 98 10 90 8 450 450		230	240	1/15	30			70.3-L	420
76.1-P 284 260 152 50 67 4 76.1-P 284 260 152 50 67 4 470 76.1-P 284 260 152 50 67 4 470 76.1-P 292 10 71.2-E 393 406 470 163 50 92 10 76.1-P 393 470 163 50 92 10 77.0-E 70 70 70 173 60 127 20 71.2-E 80.8-P 495 406 100 12 406 77.0-E 70 70 70 70 76.1-P 286 100 12 406 71.2-E 70 70 70 100 12 103 15 60 4 70 70 70 70 29 150 98 10 90 8 70 70 70 70 70 70 70 70 70 70 70 70 <td></td> <td>272</td> <td>155</td> <td>122</td> <td>25</td> <td></td> <td></td> <td></td> <td>403</td>		272	155	122	25				403
130 142 30 142 30 143 166 55 96 10 160 50 149 30 71.2-E 395 160 50 149 30 76.1-P 393 470 162 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 77.0-E 139 30 406 173 60 127 20 406 406 406 106 15 80.8-P 495 406 406 406 89 100 12 406		235	150	1/2	30				442
160 50 149 30 71.2-E 395 160 50 149 30 71.2-E 395 176 65 145 30 76.1-P 393 162 50 113 20 470 163 50 92 10 470 163 50 92 10 77.0-E 173 60 127 20 76.1-P 406 173 60 127 20 76.1-P 406 173 60 127 20 76.1-P 406 139 30 80.8-P 495 406 106 15 80.8-P 495 406 89 10 12 406 406 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 <td></td> <td>166</td> <td>55</td> <td>96</td> <td>10</td> <td></td> <td></td> <td></td> <td>450</td>		166	55	96	10				450
100 50 145 50 743 50 742 555 176 65 145 30 76.1-P 393 165 50 113 20 470 163 50 92 10 470 163 50 92 10 77.0-E 173 60 127 20 76.1-P 406 173 60 127 20 76.1-P 406 173 60 127 20 76.1-P 406 139 30 76.1-P 406 406 106 15 80.8-P 495 100 12 406 406 89 10 12 406 272 210 103 15 60 4 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 100 12		160	50	1/10	30			71 2_F	305
176 65 145 56 162 50 133 40 76.1-P 393 165 50 113 20 470 163 50 92 10 470 173 60 127 20 77.0-E 139 30 77.0-E 139 30 106 15 80.8-P 495 100 12 406 406 89 10 20 406 76.1-P 284 260 152 50 67 4 470 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 1		176	50 65	145	30			/ 1.Z ⁻ L	555
162 50 133 40 70.14 333 165 50 113 20 470 163 50 92 10 470 173 60 127 20 77.0-E 139 30 77.0-E 139 30 106 15 80.8-P 495 100 12 406 406 89 10 20 470 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10		162	50	133	40			76 1-P	303
163 50 113 10 10 170 163 50 92 10 173 60 127 20 173 173 60 127 20 77.0-E 139 30 106 15 80.8-P 495 106 15 80.8-P 495 406 406 406 89 10 12 406 406 406 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 10		165	50	113	20			70.11	470
100 100 127 20 173 60 127 20 147 40 77.0-E 139 30 80.8-P 495 106 15 80.8-P 495 100 12 406 89 10 406 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10		163	50	92	10				470
11.5 60 12.7 10 10 77.0-E 139 30 106 15 80.8-P 495 106 15 80.8-P 495 100 12 406 89 10 406 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 74		173	60	127	20				
139 30 139 30 106 15 100 12 89 10 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 8		1/5	00	147	40			77 0-F	
105 50 106 15 80.8-P 495 100 12 406 89 10 82.0-E 465 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 10				139	30			//.0 L	
100 12 406 100 12 406 89 10 82.0-E 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 10				106	15			80 8-P	495
100 11 100 11 100				100	12			00.01	406
76.1-P 284 260 152 50 67 4 465 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 8				89	10				100
76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 8				05	10			82.0-F	465
272 210 103 15 60 4 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8	76.1-P	284	260	152	50	67	4	52.0 L	470
286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8		272	210	103	15	60	4		.,0
229 150 98 10 90 8		286	260	103	10	74	6	82.1-VS	
		229	150	98	10	90	8		

	288	290	148	30	65	6		
	171	70	151	30	75	8		
	195	80	94	10	77	8		
	174	50	96	10	75	8		
	171	60	97	10				
	163	60	105	12				
	160	50	102	12				
			100	10			84.3-G	404
			103	12				
			92	10			84.3-P	487
77.0-Е	281	300	150	30	60	5	85.2-P	495
	378	600	145	40	78	8		451
	360	540	152	50	85	6		460
	303	330	93	10	88	8		502
	168	50	95	10	87	8		444
	180	70	143	40	63	5		456
	181	65	145	50	110	12		430
	163	50	156	50	110	12		
	170	65	113	20	110	12	87.0-P	386
	166	55	102	15	110	12		
	184	80	150	50	110	12		
	178	70	156	50	110	12		
	171	70	158	50	110	12		
	160	55	112	20	110	12		
			156	50	110	12		
			142	45	110	12		
			105	15	110	12		
			100	12	110	12		
					110	12		
78.2-VS	287	250						
80.1-E	160	50	86	10				
	220	120	151	40				
			148	35				
			106	10				
			100	10				
			91	10				
			107	12				
			98	10				
			96	10				
			153	50				
80.8-P	325	450	107	20	75	8		
	320	430	121	30	78	8		
	162	50	145	30	74	8		

	162	50	156	50		
	180	80	107	20		
	162	50	100	15		
			100	15		
			97	15		
			101	15		
			106	15		
			95	15		
			108	15		
			111	20		
			91	10		
			95	10		
			88	10		
			94	12		
			87	10		
			90	10		
			97	12		
			85	10		
			90	10		
			102	20		
			90	10		
	440	01.0	100	45	00	0
82.0-E	412	810	109	15	83	8
	1//	70	118	20	83	8 5
	197	80	100	10	58	5
	195	100	153	50	72	/
	175	05	69 150	10		
	1//	65	152	50		
			106	15		
			155	50		
			95 112	20		
			112	20		
			100	10		
			09	10		
			95	10		
			94 100	10		
			100	10		
			93	10		
			55	10		
82.1-VS	161	50	150	40	67	4
	205	100	120	20	90	8
	373	560	101	10	80	8
			95	10		
			112	10		
			115	20		
			104	15		

			96	10		
			92	10		
			100	10		
84.3-P	458	1200	158	40	29	5
	379	730	153	30	89	8
	412	850	90	10	80	8
	286	300	153	40	91	8
	380	600	107	10	91	8
	352	500	96	10	91	8
	327	420	155	50	91	8
	306	350	92	10	91	8
	295	350	146	40	91	8
	219	120	94	10	91	8
	263	170	103	12	91	8
	165	50	106	12	91	8
	186	80	90	10	91	8
	166	50	102	10	91	8
	165	50	90	10	91	8
			93	10	91	8
			101	10	91	8
			138	30	91	8
			95	10		
			105	10		
			101	10		
			150	40		
			150	40		
			150	40		
			150	40		
			107	10		
85.2-P	420	870	118	20	90	8
	370	550	98	10	90	8
	308	320	111	20	73	5
	285	270	102	10		
	299	300	105	12		
			95	10		
			107	15		
			107	12		
			103	10		
			97	10		
85.5-G	382	705				
87.0-P	330	420	90	10	80	8
	279	240	153	40	80	8
	301	300	107	10	80	8
	273	240	146	40	80	8

232	160	155	50	80	8
274	240	92	10	80	8
242	180	146	40	80	8
168	50	146	40	80	8
		92	10	80	8
		146	40	80	8
		130	30	80	8
		146	40	80	8
		146	40	80	8
		157	50	80	8
		110	10	80	8
		150	40	80	8
		155	50	80	8
		112	20	80	8
		92	10	80	8
		105	15	80	8
		107	20	80	8
		95	10	80	8
		93	10	80	8
		100	12	80	8
		97	10	80	8
		92	10	80	8
		106	12	80	8
		105	20	80	8
		97	10	80	8
		95	10	80	8
		107	20	80	8
		151	50	80	8
				80	8
				80	8
				80	8
				86	7
				80	7
				75	5
				87	8
				81	8

	White	Sucker						٢	Yellow
1	I	В		Y			Α		E
Weight	Length	Weight	Length	Weight		River Code Le	ength W	eight Le	ngth
1260						69.5-P	165	50	123
950							230	140	116
890							200	80	127
680							170	50	108
							166	45	116
1120	132	25					187	70	116
	100	20					199	80	
	118	20					159	45	
	109	15					167	50	
	112	20					179	50	
	102	15					185	70	
	/4	10							
	120	25							
	105	20							
	83	10							
	91	10							
	91	10							
	95	10							
	111	12							
		10							
	112	15							
1170	122	20							
1200									
900									
1010									
630									
710	271	220	7	2	4				
1160	226	250							
	276	240							
	101	10							
1000									
1090									
780									
1270	110	20							
1210	119	20							
1210									
	204	80	8	32	6	70.0-P	162	40	120
	105	12	9	00	8	-	219	100	120

	105	12	95	8		217	120	120
	111	15				210	100	134
	103	10				205	90	83
	116	15				220	110	132
	113	20				170	50	123
	103	10				176	55	130
						188	60	87
800						174	50	
						205	100	
1260	123	20				137	30	
						180	60	
1280	315	390						
1080								
1150								
1310								
1000								
1100								
910								
720	155	50						
	133	30						
	113	20						

70.5-E	185	65	115
	170	50	115
	168	50	115
	136	40	115
	241	150	115
	212	100	115
	163	40	115
	223	120	115
	158	40	115
	177	55	115
	195	70	115
	177	50	115
	180	50	115
	130	20	115
	130	25	115
	173	50	115
			115
			115
			115
			115
			115
			115
			115
			115
			115

			117 123
71.1	-VS		126 90 136 132 83
			117 89 90
71.2	-E 185	5 70	138 130 143
76.1	-Р		
77.0	-E 170 150) 50) 30	132 99 93 89 89
80.8	-P 267 191 170 160	7 250 L 90 D 60 D 50	100 90 95 95 92
82.0	-E 235 156 140 142	5 160 5 45 0 30 2 30	108 108 105
84.3	-P 151 223 150	L 45 3 140) 45	116 114
87.0	-P 246 225 183 162 155 147	5 220 5 150 3 80 2 50 5 50 7 40	15 15 15 97 105

95
101
106
106
95
97
95
100
109
116
96
100
103
101
100
105
100
102
105

r Perch Fallfish				fish				
3		Y			A	I	3	٢
Weight	Length	Weight	River Co	ode Length	Weight	Length	Weight	Length
20	57	7 5	71.2-Е	372	510	112	10	
15	58	3 5				103	10	
20	68	3 6 -						
10	/1	. 5	/6.1-P	334	350			6/
15	/0) 5		405	520			/0
15	70) 5 · c		406	550			68
	70			370	430			08
	70 סכ) E		150	50			01 72
	70) 5 : 5		170	50 40			75
	60	, J 1 5		104	40			74
	61	, J 6		138	40			68
	75	5 6		140	50			63
	60) 4						00
	60) 4	77.0-E	152	30	126	20	59
	60) 4		175	50	136	20	70
	60) 4		165	40	142	20	65
	60) 4		160	40	127	20	56
	60) 4		135	25	140	20	65
	60) 4		139	30	105	10	68
	60) 4		136	20	126	15	70
	60) 4				130	20	68
	60) 4				127	20	65
	60) 4				105	10	
	60) 4				118	15	
	60) 4				104	10	
	60) 4				128	20	
	60) 4				132	20	
	60) 4				119	15	
	60) 4						
	60) 4	80.1-E	264	170	115	15	65
	60) 4		232	130	143	20	68
	60) 4		150	30	130	20	70
	60) 4		245	130	126	15	68
	60) 4		255	1/0	157	40	
	60) 4		135	20	139	30	
	60) 4		216	200	139	30	
	60	y 4		142	35	125	15	
	60	у 4) л		143	30			
	6U 60	, 4) л		160	40 10			
		, 4		102	40 25			
1 2	67	, _с		150	 ⊿∩			
10	67	, L		150	40 20			
10	07	J		100	50			

18	67	5		148	30			
20	67	5		159	25			
20 10	67	5		150	۸0 کار			
25	67	5		160	40 50			
20	67	5		109	20			
20	67	5		150	30			
25	67	5		147	30			
10	6/	5						
	6/	5	80.8-P	245	150	128	20	
	6/	5		234	110	123	15	
	67	5		230	120			
	67	5		245	150			
	67	5		147	30			
	72	6		136	20			
	73	6		149	30			
	83	6		146	30			
	80	8		153	30			
	82	8						
	85	8	82.0-E	158	40	105	12	
	72	8		158	40	105	12	
	25	8		241	140	105	12	
				239	130	105	12	
				232	120	105	12	
16	70	5		223	120	105	12	
16	70	5		236	130	105	12	
16	70	5		135	25	105	12	
16	70	5		133	25	105	12	
16	70	5		167	40	106	15	
16	70	5		131	25	117	15	
16	70	5		152	30	11/	10	
16	70	5		135	20			
16	70	5		159	40			
16	70	5		197	-0 60			
16	70	5		152	40			
16	70	5		155	40			
10	70	5		159	40 F0			
10	70	5		100	20			
10	70	5		144	30 45			
16	63	6		166	45			
16	83	6		138	25			
16	/4	6		166	40			
16	75	6		150	30			
16	67	6		128	20			
16	62	5		151	30			
16	71	6						
16	65	6	82.1-VS	221	130	117	15	70
16	70	6		216	100	117	15	70
16	77	8		216	100	117	15	70
16	75	8		216	100	117	15	70

20				216	100	117	15	70
20						117	15	70
						117	15	70
20						117	15	70
10						117	15	70
20						117	15	
20						117	15	
10						117	15	
20						117	15	
10						117	15	
10						117	15	
						117	15	
20	87	8				117	15	
20	80	8				117	15	
25	81	8				117	15	
	86	8				117	15	
	72	6				117	15	
						117	15	
	84	8				117	15	
						117	15	
20	80	5				117	15	
10	84	7				117	15	
10	80	5				117	15	
10	91	8				117	15	
10	80	7				117	15	
						117	15	
15	84	8						
10	85	8	84.3-P	165	40	110	12	65
10				135	20	110	12	62
10				150	30	110	12	
10				140	30	100	10	
				152	30	113	10	
10				235	120	122	15	
12				137	25	111	10	
10				168	40	115	15	
				167	40	113	15	
				156	40	122	15	
20				143	30	121	15	
20				161	40			
				151	40			
				160	40			
112	88	8		133	30			
112				149	30			
112				149	30			
112				145	30			
10								
15			85.2-P	355	400			

	240	150			
	240	140			
	251	150			
	215	100			
	225	100			
	154	40			
	147	30			
	155	40			
	148	30			
	165	50			
87.0-P	226	115	122	30	65
	128	20	131	20	81
	213	100	127	20	76
	165	50			84
	173	50			
	152	40			
	172	50			
	146	35			
	170	50			
	139	35			
	146	30			
	165	40			
	144	30			
	142	30			
	172	50			
	137	30			
	87.0-Р	240 240 251 215 225 154 147 155 148 165 87.0-P 226 128 213 165 173 165 173 152 172 146 170 139 146 165 174 172 146	240 150 240 140 251 150 215 100 225 100 154 40 147 30 155 40 148 30 165 50 87.0-P 226 115 128 20 213 100 165 50 173 50 152 40 172 50 146 35 170 50 139 35 146 30 165 40 144 30 144 30 142 30 172 50 137 30	240 150 240 140 251 150 215 100 225 100 154 40 147 30 155 40 148 30 165 50 87.0-P 226 115 122 128 20 131 213 100 127 165 50 173 50 152 40 172 50 146 35 170 50 139 35 146 30 165 40 144 30 144 30 144 30 144 30 142 30 172 50 137 30	240 150 240 140 251 150 215 100 225 100 154 40 147 30 155 40 148 30 165 50 87.0-P 226 115 122 30 128 20 131 20 213 100 127 20 165 50 173 50 152 40 172 50 146 35 170 50 139 35 146 30 165 40 144 30 165 50

				Wa	lleye		
(Α			В		Y
Weight	River Code L	ength W	eight	Length	Weight	Length	Weight
	68.7-G	530	1440				
	69.5-P	302	22				
3							
4	71.2-E			25	5 12	0	
3				140	6 2.	5	
4							
5	84.3-P	148	30				
4							
4	87.0-P	375	450				
4							
3							
3							
-							
2							
3							
3							
2							
3							
3							
3							
3							
5							

		Rocl	kbass					
	Α		В		Y			ł
River Code Length	Weight	Length	Weight	Length	Weight		River Code Leng	th
							68.7-G	173
								205
		07	· 11	-			60 F D	122
		57	1.	J			09.J-F	165
								187
		96	15	5				175
								175
		104	- 20)				
		95	15	5				
		87	12	2				
							70.0-P	175
								137
								153
								168
								105
								192
							70.5-E	172
								202
								121
		105	20)				198
		98	20)				156
								188
								117
								182
								115
								175
								127
		103	20	`				103
		102	20	5				11/
		108	1))				182
				-				101
		99	20)	54	4	71.1-VS	174
		96	15	5	38	1		187
					39	1		
					43	1	71.2-Е	184
					50	2		
					45	2	87.0-P	106
				:	33	1		
					34	1		

			39	1
			44	2
			49	2
10)5	20	57	5
			46	3
			46	3
10)4	40	40	2
9	6	25	54	2
11	.3	30		
11	.2	30		
10	00	25		
11	.2	30		
11	.2	30		
8	9	15		
9	0	20		
10)5	30		
9	8	25		

Pumpkinseed								Blue
1		В		Y		ļ	4	E
Weight	Length	Weight	Length	Weight	River Code Lei	ngth	Weight	Length
110					69.5-P	165	80	95
120						164	90	
						182	110	
40	100	20				192	150	
90	101	20				205	160	
40	102	20				201	150	
110	//	15				1/8	100	
120	8/	15				150	55	
	95	13				134	40	
	90 102	15				181	110	
	103	20				140	50 70	
	100	20				197	110	
130	105	20				105	50	
130	105	20				170	100	
80						161	70	
105						144	55	
50						130	30	
185						115	25	
						160	75	
115	113	20						
200	100	20			70.0-P	143	60	97
30	96	20				187	150	95
170						191	160	
80						214	200	
160						162	90	
35						183	150	
150						165	90	
30						144	60	
140						143	65	
50						178	115	
105						176	110	
40						170	100	
30						130	45	
100						127	45	
110					70.5-E	165	90	110
150						157	70	110
						189	160	110
150						157	70	110
						162	90	
30						176	110	
						189	160	
						165	90	

165	90
178	115
176	110
170	100
165	90
165	90
185	125
178	110
175	100
100	200
199	120
189	150
192	150
203	200
190	140
192	150
153	70
143	50
206	215
122	35
182	120
176	110
155	70
181	115
177	115
180	110
212	240
177	110
170	100
176	130
142	60
165	90
100	50
183	120
185	130
177	110
184	130
185	150
203	190
213	220
200	200
181	110
205	230
225	250
169	100
206	160
167	001
102	90

71.1-VS

71.2-Е

	211	200							
	156	85							
77.0-Е	217	260							
	223	250							
80.1-E	205	200							
82.1-VS	133	40							
84.3-P	215	250							
85.2-P	218	200							
87.0-P	212	230							
	202	240							
egill						L	argemo	uth Bas	S
----------	--------	--------	----------	-------------------------	-----	--------	--------	---------	--------
3		Y			A	4	E	3	١
Weight	Length	Weight		River Code Lengt	h	Weight	Length	Weight	Length
10)	54	3	69.5-P			122	15	75
		47	2				99	10	66
		50	3				115	20	78
							105	12	
							78	10	
				70.0-P	349	540	133	30	70
					336	620	92	10	65
					173	65	103	10	67
							105	12	
							143	45	
							142	50	
				70.5-E			119	20	83
							136	35	73
							92	10	77
							133	20	67
							120	15	
							118	20	
							112	20	
							91	10	
		50	<i>c</i>				91	10	
20 20)	59	6	71.1-VS	147	45			
				71.2-Е	173	60	117	20	
							148	40	
							150	50	
							132	30	
							101	10	
							119	15	
							87	10	
							87	10	
							117	15	
				76.1-P			143	30	
	_	27					146	40	
35	5	3/	1	77.0-E			155	55	
3	5						130	30	
20)							20	
				82.0-E			123	20	
				84.3-P	215	250			

87.0-P	120	30
	99	15

				Ameri	can Sha	a	
1			Α		В		Y
Weight		River Code Length	Weight	Length	Weight	Length	Weight
0	8	69.5-P	U	U	U	87	7 8
	8					95	5 9
	8					21 21	5 8
	0					Q	5 10
						91	2 2
						0.	- 0
	C					0.	
	6					84	+ 8 2
	6					/:	3 b
	6					80) 6
						87	7 8
						87	7 8
						80) 8
	9					81	L 8
	8					87	7 8
	8					80) 8
	7					81	L 8
						85	5 8
						93	3 8
						83	3 8
						87	7 8
		70.0-P				84	1 8
						· ·	
		70 5-F				101	ı 10
		70.5 L				76	5 8
						67	, 5 5 7
						0/	/ / 0
						0.	
						90	5 10
						1.	/ 8
						95	s 10
						95	5 10
						77	7 8
						95	5 10
		71.2-Е				82	2 8
						72	2 7
						82	2 8
		77.0-E				103	3 10
						100) 10
						95	5 10
						101	L 10
		80.1-E				92	2 10
							-

American Shad

	80	5
	68	5
	80	5
	85	7
	78	5
80.8-P	74	8
82.0-E	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
84.3-P	97	10
84.3-P	97 110	10 12
84.3-P 85.2-P	97 110 92	10 12 7
84.3-P 85.2-P	97 110 92 92	10 12 7 7
84.3-P 85.2-P	97 110 92 92 92	10 12 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92	10 12 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

87.0-P

			Ame	rican	Eel			
	ŀ	4		В			Y	
River Code Lengt	h	Weight	Length	Weig	ht	Length	Weight	:
76.1-P						250	2	80
82.0-E			5	50	410)		
82.1-VS	700	720)					
84.3-P	750	720	1					

Smallmouth Bass									
	A B Y								
River Code	Length	Weight	Length	Weight	Length	Weight	River Code		
UST Rock Dam	302	340	117	20	80	8	UST Rock D		
	239	150	125	20	75	8			
	190	80	104	10	73	8			
	186	70	103	10	80	8	Dst Pwr dsi		
	172	60	86	10	81	8			
	173	60	96	10	82	8			
			118	15	72	8	Plunge Poc		
			105	10	76	8			
			101	10					
Dst Pwr dschg	283	290	132	25	66	5			
	250	170	130	25	78	8			
	163	50	118	20	80	8			
	185	70	115	20	72	8			
	171	50	125	20	70	8			
	209	120	107	12					
	162	50	110	10					
	190	90	95	10					
	174	60	108	10					
	192	90	108	12					
			100	10					
			110	12					
			101	10					
			105	10					
			92	10					
Ust Pwr dschg	193	85	139	20	60	6			
	172	50	122	20	67	8			
	186	70	111	10	55	6			
	231	125	93	10	63	7			
	194	85	92	10	65	8			
			120	20	65	8			
			93	10	65	8			
			75	10	65	8			
			136	30	65	8			
			114	15	65	8			
			125	18	65	8			
			115	12	65	8			

	126	18	65	8
	106	12	65	8
	115	20	65	8
	81	10	65	8
	112	12	65	8
	113	15	65	8
	85	10	65	8
	155	50	65	8
	111	20	65	8
	94	10	65	8
	118	20	65	8
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
	115	12		
280	85	10	72	6
400	90	10	85	8
200	111	15	72	8
105	109	15	68	8
300	100	10	78	8
90	122	20	68	8
70	64	10	71	8
80	158	50		
150	156	40		
100	116	20		
75	120	12		
100	155	50		
90	88	10		
80	110	15		
90	106	15		
90	105	12		
80	103	10		
50	120	20		
50	103	10		

Plunge Pool

117	20
115	20
90	10

		White	Sucker				
	Α		В		Y		Α
Length	Weight	Length	Weight	Length	Weight	River Code Length	Weight
)am		291	. 300	D		UST Rock Dam	
41	0 950)					
38	0 740)					
44	7 950						
42	6 810						
41	2 780						
40	9 810						
43	1 940						
41	0 880						
48	0 1240						
41	9 915						
44	0 1040						
38	5 650						

Yello	w Perch					Fa	llfish
	В		Y		Α		В
Length	Weight	Length	Weight	River Code Length	Weight	Length	Weight

Walleye А В Ү

	Υ		Α		В		Y
Length	Weight	River Code Length	Weight	Length	Weight	Length	Weight
		Plunge Pool		21	4 7	75	

Rockbass

	Α		В		Y	
River Code Length	Weight	Length	Weight	Length	Weight	River Code

Ust Pwr ds

Plunge Poc

		Pumpk	kinseed					
Α		I	В		Y			Α
Length	Weight	Length	Weight	Length	Weight	Rive	r Code Length	Weight
140	60	81	10	67	8	UST	Rock E 191	120
		75	10	70	8			
		83	10	67	8	Ust I	Pwr ds 170	85
				61	8			
172	2 115	122	25					
159	9 60	87	10					
132	2 40	72	10					
135	5 40	72	10					
						Plun	ge Poc 189	140

lunge Poc	189	140
	183	130
	189	150
	191	150
	183	140
	190	120
	187	150
	160	75
	164	80

Bluegill							Largemouth Bas		
В			Y			Α	В		
Length	Weight	Length	Weight		River Code Leng	th Weight	Length	Weight	
					Plunge Pool		95	12	
103	20) 53	3 4						
		47	7 4						
		45	5 3						
		40) 2						
		27	r 1						
		27	r 1						
		35	5 1						
		33	3 1						
		37	7 1						
		48	3 1						

S			American Shad							
	Υ		Α		В		Y			
Length	Weight	River Code Length	Weight	Length	Weight	Length	Weight			
	American Eel									
-------------------	--------------	--------	-------------	--------	--------	--	--	--	--	--
River Code Length	A Weight	Length	B Weight	Length	Weight					
UST Rock Dam		490	250							
		380	180							
Dst Pwr dschg		260	40	120	8					
		300	50	120	8					
		160	10	120	8					
		160	10							
Ust Pwr dschg		140	10							
Plunge Pool		670	430	145	5					
		330	50	160	5					
		300	35	130	5					
		350	35	110	4					
		330	35	140	6					
		360	60	150	6					
		250	25	145	6					
		190	25	150	10					

Aver Code LengthWeightBYNore Code LengthNore Code Length <th></th> <th></th> <th>Sm</th> <th>nallmout</th> <th>h Bass</th> <th></th> <th></th> <th></th> <th></th>			Sm	nallmout	h Bass				
River Code LengthWeightLengthWeightMengetRiver Code Length69.5-P2482001081568.7.6480183701594515541570.0-P175701594516031570.5-E2081503515035160122135150351707017970.5-E2073001393016016017055103101707071.2-E3073001393010173551504016016023212011310160160245150143351604202451551504042042024515515040420245155150404202451551504042024515515040420245155150404202451551532542016055961042016055150304016155150304016250113204016350127204016455160127401751601274040161 <th></th> <th>Α</th> <th></th> <th>В</th> <th></th> <th>Y</th> <th></th> <th></th> <th>F</th>		Α		В		Y			F
69.5-P 248 200 108 15 68.7-6 480 70.0-P 175 70 159 45 34 70.0-P 175 70 159 45 34 70.5-E 170 70 92 12 69.5-P 473 70.5-E 170 70 92 12 70	River Code L	ength We	eight Le	ength We	eight Leng	th Wei	ght	River Code L	ength
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69.5-P	248	200	108	15			68.7-G	480
70.0-P 175 70 159 45 69.5-P 473 70.5-E 170 70 92 12 69.5-P 473 70.5-E 170 70 92 12 69.5-P 473 70.5-E 170 75 150 35 100		183	70	86	10				415
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									415
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70.0-P	175	70	159	45				394
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100	10				
70.5-E 170 70 92 12 238 150 85 10 182 80 157 45 222 135 150 35 170 55 103 10 179 75 176 55 71.2-E 307 300 139 30 232 120 103 10 158 60 137 30 245 150 143 35 251 155 150 40 245 150 143 35 251 155 150 40 245 150 143 35 251 155 150 40 225 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 412 450 166 55 96 10 450 450 166 50 133 20 470<								69.5-P	473
238 150 85 10 182 80 157 45 222 135 103 10 179 75 10 10 71.2-E 307 300 139 30 210 148 30 70.0-P 215 150 143 35 215 155 150 40 225 130 110 12 225 130 110 12 225 130 110 12 236 160 92 10 70.5-E 420 232 155 133 25 442 442 230 150 142 30 71.2-E 393 166 55 96 10	70.5-E	170	70	92	12				
182 80 157 45 222 135 150 35 170 55 103 10 179 75 17 17 71.2-E 307 300 139 30 225 120 148 30 232 120 103 10 158 60 137 30 158 60 137 30 245 150 143 35 251 155 104 40 247 160 142 30 247 160 142 30 252 130 110 12 236 160 92 10 450 166 55 96 10 450 166 55 96 10 470 166 50 133 40 71.2-E 176 65 145 30 470 <td></td> <td>238</td> <td>150</td> <td>85</td> <td>10</td> <td></td> <td></td> <td></td> <td></td>		238	150	85	10				
122 135 150 35 170 55 103 10 179 75 103 10 176 55 103 10 176 55 103 10 176 55 103 10 1232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 150 251 155 150 40 427 247 160 142 30 483 235 155 133 25 442 230 100 12 450 160 50 149 30 71.2-E 395 176 65 145 30 470 470 1610 50 133 40 76.1-P 393 162 50 133		182	80	157	45				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		222	135	150	35				
179 75 176 55 71.2-E 307 300 139 30 225 120 148 30 323 300 158 60 137 30 303 30 158 60 137 30 300 70.0-P 245 150 143 35 70.0-P 245 150 143 35 70.5-E 420 247 160 142 30 442 442 236 160 92 10 70.5-E 420 247 160 142 30 442 442 230 110 12 442 450 450 166 55 96 10 442 450 450 166 55 96 10 450 450 450 166 55 96 10 470 470 470 166 50 113 20 470 470 165 50		170	55	103	10				
71.2-E 307 300 139 30 225 120 148 30 232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 70.0-P 245 150 143 35 70.0-P 245 150 142 30 70.5-E 420 225 130 110 12 70.5-E 420 236 160 92 70.5-E 420 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 71.2-E 393 166 55 96 10 470 470 162 50 113 20 470 470 163 50 92 10 470 470 470 163 50 127 20 470 470<		179	/5						
71.2-E 307 300 139 30 225 120 148 30 232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 70.149 247 160 142 30 70.5-E 420 247 160 142 30 70.5-E 420 272 240 145 30 483 325 442 236 160 92 10 70.5-E 420 272 240 145 30 450 453 166 55 96 10 450 450 166 55 96 10 470 470 163 50 113 20 470 470 163 50 92 10 71.2-E 393 466 165 50 113 20 70.1-E 470 173 60 </td <td></td> <td>1/6</td> <td>55</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1/6	55						
71.2-E 307 300 139 30 225 120 148 30 232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35	71 C E	207	200	120	20				
223 120 146 50 232 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 50 251 155 150 40 70.0-P 245 130 110 12 70 236 160 92 10 70.5-E 420 236 160 92 10 70.5-E 420 236 160 92 10 70.5-E 420 236 150 142 30 483 235 155 133 25 442 230 150 142 30 71.2-E 393 166 55 96 10 71.2-E 393 162 50 133 40 76.1-P 393 165 50 113 20 470 470 173 60 127 20 80 495 406 <td>/1.Z-E</td> <td>307</td> <td>120</td> <td>139</td> <td>30</td> <td></td> <td></td> <td></td> <td></td>	/1.Z-E	307	120	139	30				
1252 120 103 10 158 60 137 30 189 70 149 40 70.0-P 245 150 143 35 10 247 160 142 30 70.5-E 420 225 130 110 12 483 483 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 10 10 166 55 96 10 10 10 10 166 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 470 406 173 60 127 20 406 406 76.1-P 286 100 12 </td <td></td> <td>225</td> <td>120</td> <td>148</td> <td>30</td> <td></td> <td></td> <td></td> <td></td>		225	120	148	30				
138 600 137 30 189 70 149 40 70.0-P 245 150 143 35 155 251 155 150 40 160 247 160 142 30 160 225 130 110 12 483 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 149 30 71.2-E 395 166 55 96 10 470 470 162 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 470 470 173 60 127 20 470 406 173 60 127 20 406 406 89 100 12 406 40		232	120	103	10				
183 70 143 40 70.0-P 245 150 143 35 150 40 247 160 142 30 10 12 10 143 40 1		156	70	140	30 40			70.0.0	
243 150 143 35 251 155 150 40 247 160 142 30 225 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 166 51 166 55 96 10 161 162 30 166 50 143 30 76.1-P 393 165 50 113 20 470 163 50 92 10 173 60 127 20 173 60 127 20 470 406 173 60 127 20 406 406 89 100 12 406 406 406 89 100 12 406 406		109	150	149	40 25			70.0-P	
231 153 150 40 247 160 142 30 225 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 166 55 166 50 149 30 71.2-E 395 176 65 145 30 470 393 165 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 173 60 127 20 406 173 60 127 20 406 406 406 406 89 100 12 406 406 406 406 76.1-P 284 260 152 50 67 </td <td></td> <td>245</td> <td>150</td> <td>145</td> <td>35</td> <td></td> <td></td> <td></td> <td></td>		245	150	145	35				
247 100 142 30 225 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 16 51 160 50 149 30 71.2-E 395 176 65 145 30 470 470 162 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 406 406 173 60 127 20 406 406 106 15 80.8-P 495 406 100 12 406 406 406 80 100 12 406 406 272 210 103 15 60 4 <td></td> <td>251</td> <td>155</td> <td>142</td> <td>40</td> <td></td> <td></td> <td></td> <td></td>		251	155	142	40				
223 130 110 12 236 160 92 10 70.5-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 50 160 166 55 96 10 50 133 40 71.2-E 393 162 50 133 40 76.1-P 393 470 163 50 92 10 470 470 470 163 50 92 10 470 406 50 406 173 60 127 20 406 50 406 470 106 15 80.8-P 495 406 406 470 106 152 50 67 4 470 406 26 260 152 50 67 4 470 272 210 103 <td></td> <td>247</td> <td>120</td> <td>142</td> <td>50 12</td> <td></td> <td></td> <td></td> <td></td>		247	120	142	50 12				
230 100 32 10 70.3-E 420 272 240 145 30 483 235 155 133 25 442 230 150 142 30 450 166 55 96 10 450 166 55 96 10 50 166 50 149 30 71.2-E 395 176 65 145 30 76.1-P 393 165 50 113 20 470 163 50 92 10 470 163 50 92 10 470 163 50 92 10 470 173 60 127 20 406 139 30 80.8-P 495 100 12 406 406 89 100 12 406 76.1-P 284 260 152 50 67 4 470 272 210 103<		225	160	02	12			70 F F	420
272 240 143 30 443 235 155 133 25 442 230 150 142 30 450 166 55 96 10 450 160 50 149 30 71.2-E 395 176 65 145 30 470 162 50 113 20 470 163 50 92 10 470 163 50 92 10 470 163 50 92 10 470 173 60 127 20 470 139 30 406 406 406 106 15 80.8-P 495 100 12 406 406 89 10 12 406 76.1-P 284 260 152 50 67 4 470 229 150 98 10 90 8 450 450		230	240	1/15	30			70.3-L	420
76.1-P 284 260 152 50 67 4 76.1-P 284 260 152 50 67 4 470 76.1-P 284 260 152 50 67 4 470 76.1-P 292 10 71.2-E 393 406 470 163 50 92 10 76.1-P 393 470 163 50 92 10 77.0-E 70 70 70 173 60 127 20 71.2-E 80.8-P 495 406 100 12 406 77.0-E 70 70 70 70 76.1-P 286 100 12 406 71.2-E 70 70 70 100 12 103 15 60 4 70 70 70 70 29 150 98 10 90 8 70 70 70 70 70 70 70 70 70 70 70 70 <td></td> <td>272</td> <td>155</td> <td>122</td> <td>25</td> <td></td> <td></td> <td></td> <td>403</td>		272	155	122	25				403
130 142 30 142 30 143 166 55 96 10 160 50 149 30 71.2-E 395 160 50 149 30 76.1-P 393 470 162 50 113 20 470 470 163 50 92 10 470 470 163 50 92 10 77.0-E 139 30 406 173 60 127 20 406 406 406 106 15 80.8-P 495 406 406 406 89 100 12 406		235	150	1/2	30				442
160 50 149 30 71.2-E 395 160 50 149 30 71.2-E 395 176 65 145 30 76.1-P 393 162 50 113 20 470 163 50 92 10 470 163 50 92 10 77.0-E 173 60 127 20 76.1-P 406 173 60 127 20 76.1-P 406 173 60 127 20 76.1-P 406 139 30 80.8-P 495 406 106 15 80.8-P 495 406 89 10 12 406 406 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 <td></td> <td>166</td> <td>55</td> <td>96</td> <td>10</td> <td></td> <td></td> <td></td> <td>450</td>		166	55	96	10				450
100 50 145 50 743 50 742 555 176 65 145 30 76.1-P 393 165 50 113 20 470 163 50 92 10 470 163 50 92 10 77.0-E 173 60 127 20 76.1-P 406 173 60 127 20 76.1-P 406 173 60 127 20 76.1-P 406 139 30 76.1-P 406 406 106 15 80.8-P 495 100 12 406 406 89 10 12 406 272 210 103 15 60 4 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 100 12		160	50	1/10	30			71 2_F	305
176 65 145 56 162 50 133 40 76.1-P 393 165 50 113 20 470 163 50 92 10 470 173 60 127 20 77.0-E 139 30 77.0-E 139 30 106 15 80.8-P 495 100 12 406 406 89 10 20 406 76.1-P 284 260 152 50 67 4 470 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 1		176	50 65	145	30			/ 1.Z ⁻ L	555
162 50 133 40 70.14 333 165 50 113 20 470 163 50 92 10 470 173 60 127 20 77.0-E 139 30 77.0-E 139 30 106 15 80.8-P 495 100 12 406 406 89 10 20 470 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10		162	50	133	40			76 1-P	303
163 50 113 10 10 170 163 50 92 10 173 60 127 20 173 173 60 127 20 77.0-E 139 30 106 15 80.8-P 495 106 15 80.8-P 495 406 406 406 89 10 12 406 406 406 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 10		165	50	113	20			70.11	470
100 100 127 20 173 60 127 20 147 40 77.0-E 139 30 80.8-P 495 106 15 80.8-P 495 100 12 406 89 10 406 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10		163	50	92	10				470
11.5 60 12.7 10 10 77.0-E 139 30 106 15 80.8-P 495 106 15 80.8-P 495 100 12 406 89 10 406 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 74		173	60	127	20				
139 30 139 30 106 15 100 12 89 10 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 8		1/5	00	147	40			77 0-F	
105 50 106 15 80.8-P 495 100 12 406 89 10 82.0-E 465 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 10				139	30			,,	
100 12 406 100 12 406 89 10 82.0-E 76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 10 10 10				106	15			80 8-P	495
100 11 100 11 100				100	12			00.01	406
76.1-P 284 260 152 50 67 4 465 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 8				89	10				100
76.1-P 284 260 152 50 67 4 470 272 210 103 15 60 4 470 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8 8				00	10			82.0-F	465
272 210 103 15 60 4 286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8	76.1-P	284	260	152	50	67	4	52.0 L	470
286 260 103 10 74 6 82.1-VS 229 150 98 10 90 8		272	210	103	15	60	4		.,0
229 150 98 10 90 8		286	260	103	10	74	6	82.1-VS	
		229	150	98	10	90	8		

	288	290	148	30	65	6		
	171	70	151	30	75	8		
	195	80	94	10	77	8		
	174	50	96	10	75	8		
	171	60	97	10				
	163	60	105	12				
	160	50	102	12				
			100	10			84.3-G	404
			103	12				
			92	10			84.3-P	487
77.0-Е	281	300	150	30	60	5	85.2-P	495
	378	600	145	40	78	8		451
	360	540	152	50	85	6		460
	303	330	93	10	88	8		502
	168	50	95	10	87	8		444
	180	70	143	40	63	5		456
	181	65	145	50	110	12		430
	163	50	156	50	110	12		
	170	65	113	20	110	12	87.0-P	386
	166	55	102	15	110	12		
	184	80	150	50	110	12		
	178	70	156	50	110	12		
	171	70	158	50	110	12		
	160	55	112	20	110	12		
			156	50	110	12		
			142	45	110	12		
			105	15	110	12		
			100	12	110	12		
					110	12		
78.2-VS	287	250						
80.1-E	160	50	86	10				
	220	120	151	40				
			148	35				
			106	10				
			100	10				
			91	10				
			107	12				
			98	10				
			96	10				
			153	50				
80.8-P	325	450	107	20	75	8		
	320	430	121	30	78	8		
	162	50	145	30	74	8		

	162	50	156	50		
	180	80	107	20		
	162	50	100	15		
			100	15		
			97	15		
			101	15		
			106	15		
			95	15		
			108	15		
			111	20		
			91	10		
			95	10		
			88	10		
			94	12		
			87	10		
			90	10		
			97	12		
			85	10		
			90	10		
			102	20		
			90	10		
	440	01.0	100	45	00	0
82.0-E	412	810	109	15	83	8
	1//	70	118	20	83	8 5
	197	80	100	10	58	5
	195	100	153	50	72	/
	175	05	69 150	10		
	1//	65	152	50		
			106	15		
			155	50		
			95 112	20		
			112	20		
			100	10		
			09	10		
			95	10		
			94 100	10		
			100	10		
			93	10		
			55	10		
82.1-VS	161	50	150	40	67	4
	205	100	120	20	90	8
	373	560	101	10	80	8
			95	10		
			112	10		
			115	20		
			104	15		

			96	10		
			92	10		
			100	10		
84.3-P	458	1200	158	40	29	5
	379	730	153	30	89	8
	412	850	90	10	80	8
	286	300	153	40	91	8
	380	600	107	10	91	8
	352	500	96	10	91	8
	327	420	155	50	91	8
	306	350	92	10	91	8
	295	350	146	40	91	8
	219	120	94	10	91	8
	263	170	103	12	91	8
	165	50	106	12	91	8
	186	80	90	10	91	8
	166	50	102	10	91	8
	165	50	90	10	91	8
			93	10	91	8
			101	10	91	8
			138	30	91	8
			95	10		
			105	10		
			101	10		
			150	40		
			150	40		
			150	40		
			150	40		
			107	10		
85.2-P	420	870	118	20	90	8
	370	550	98	10	90	8
	308	320	111	20	73	5
	285	270	102	10		
	299	300	105	12		
			95	10		
			107	15		
			107	12		
			103	10		
			97	10		
85.5-G	382	705				
87.0-P	330	420	90	10	80	8
	279	240	153	40	80	8
	301	300	107	10	80	8
	273	240	146	40	80	8

232	160	155	50	80	8
274	240	92	10	80	8
242	180	146	40	80	8
168	50	146	40	80	8
		92	10	80	8
		146	40	80	8
		130	30	80	8
		146	40	80	8
		146	40	80	8
		157	50	80	8
		110	10	80	8
		150	40	80	8
		155	50	80	8
		112	20	80	8
		92	10	80	8
		105	15	80	8
		107	20	80	8
		95	10	80	8
		93	10	80	8
		100	12	80	8
		97	10	80	8
		92	10	80	8
		106	12	80	8
		105	20	80	8
		97	10	80	8
		95	10	80	8
		107	20	80	8
		151	50	80	8
				80	8
				80	8
				80	8
				86	7
				80	7
				75	5
				87	8
				81	8

	White	Sucker						٢	Yellow
1	I	В		Y			Α		E
Weight	Length	Weight	Length	Weight		River Code Le	ength W	eight Le	ngth
1260						69.5-P	165	50	123
950							230	140	116
890							200	80	127
680							170	50	108
							166	45	116
1120	132	25					187	70	116
	100	20					199	80	
	118	20					159	45	
	109	15					167	50	
	112	20					179	50	
	102	15					185	70	
	/4	10							
	120	25							
	105	20							
	83	10							
	91	10							
	91	10							
	95	10							
	111	12							
		10							
	112	15							
1170	122	20							
1200									
900									
1010									
630									
710	271	220	7	2	4				
1160	226	250							
	276	240							
	101	10							
1000									
1090									
780									
1270	110	20							
1210	119	20							
1210									
	204	80	8	32	6	70.0-P	162	40	120
	105	12	9	00	8	-	219	100	120

	105	12	95	8		217	120	120
	111	15				210	100	134
	103	10				205	90	83
	116	15				220	110	132
	113	20				170	50	123
	103	10				176	55	130
						188	60	87
800						174	50	
						205	100	
1260	123	20				137	30	
						180	60	
1280	315	390						
1080								
1150								
1310								
1000								
1100								
910								
720	155	50						
	133	30						
	113	20						

70.5-E	185	65	115
	170	50	115
	168	50	115
	136	40	115
	241	150	115
	212	100	115
	163	40	115
	223	120	115
	158	40	115
	177	55	115
	195	70	115
	177	50	115
	180	50	115
	130	20	115
	130	25	115
	173	50	115
			115
			115
			115
			115
			115
			115
			115
			115
			115

			117 123
71.1	-VS		126 90 136 132 83
			117 89 90
71.2	-E 185	5 70	138 130 143
76.1	-Р		
77.0	-E 170 150) 50) 30	132 99 93 89 89
80.8	-P 267 191 170 160	7 250 L 90 D 60 D 50	100 90 95 95 92
82.0	-E 235 156 140 142	5 160 5 45 0 30 2 30	108 108 105
84.3	-P 151 223 150	L 45 3 140) 45	116 114
87.0	-P 246 225 183 162 155 147	5 220 5 150 3 80 2 50 5 50 7 40	15 15 15 97 105

95
101
106
106
95
97
95
100
109
116
96
100
103
101
100
105
100
102
105

r Perch Fallfis				fish				
3		Y			A	I	3	٢
Weight	Length	Weight	River Co	ode Length	Weight	Length	Weight	Length
20	57	7 5	71.2-Е	372	510	112	10	
15	58	3 5				103	10	
20	68	3 6 -						
10	/1	. 5	/6.1-P	334	350			6/
15	/0) 5		405	520			/0
15	70) 5 · c		406	550			68
	70			370	430			08
	70 סכ) E		150	50			01 72
	70) 5 : 5		170	50 40			75
	60	, J 1 5		104	40			74
	61	, J 6		138	40			68
	75	5 6		140	50			63
	60) 4						00
	60) 4	77.0-E	152	30	126	20	59
	60) 4		175	50	136	20	70
	60) 4		165	40	142	20	65
	60) 4		160	40	127	20	56
	60) 4		135	25	140	20	65
	60) 4		139	30	105	10	68
	60) 4		136	20	126	15	70
	60) 4				130	20	68
	60) 4				127	20	65
	60) 4				105	10	
	60) 4				118	15	
	60) 4				104	10	
	60) 4				128	20	
	60) 4				132	20	
	60) 4				119	15	
	60) 4						
	60) 4	80.1-E	264	170	115	15	65
	60) 4		232	130	143	20	68
	60) 4		150	30	130	20	70
	60) 4		245	130	126	15	68
	60) 4		255	1/0	157	40	
	60) 4		135	20	139	30	
	60) 4		216	200	139	30	
	60	y 4		142	35	125	15	
	60	у 4) л		143	30			
	6U 60	, 4) л		160	40 10			
		, 4		102	40 25			
1 오	67	, _с		150	 ⊿∩			
10	67	, L		150	40 20			
10	07	J		10	50			

18	67	5		148	30			
20	67	5		159	25			
20 10	67	5		150	۸0 کار			
25	67	5		160	40 50			
20	67	5		109	20			
20	67	5		150	30			
25	67	5		147	30			
10	6/	5						
	6/	5	80.8-P	245	150	128	20	
	6/	5		234	110	123	15	
	67	5		230	120			
	67	5		245	150			
	67	5		147	30			
	72	6		136	20			
	73	6		149	30			
	83	6		146	30			
	80	8		153	30			
	82	8						
	85	8	82.0-E	158	40	105	12	
	72	8		158	40	105	12	
	25	8		241	140	105	12	
				239	130	105	12	
				232	120	105	12	
16	70	5		223	120	105	12	
16	70	5		236	130	105	12	
16	70	5		135	25	105	12	
16	70	5		133	25	105	12	
16	70	5		167	40	106	15	
16	70	5		131	25	117	15	
16	70	5		152	30	11/	10	
16	70	5		135	20			
16	70	5		159	40			
16	70	5		197	-0 60			
16	70	5		152	40			
16	70	5		155	40			
10	70	5		159	40 F0			
10	70	5		100	20			
10	70	5		144	3U 4E			
16	63	6		166	45			
16	83	6		138	25			
16	/4	6		166	40			
16	75	6		150	30			
16	67	6		128	20			
16	62	5		151	30			
16	71	6						
16	65	6	82.1-VS	221	130	117	15	70
16	70	6		216	100	117	15	70
16	77	8		216	100	117	15	70
16	75	8		216	100	117	15	70

20				216	100	117	15	70
20						117	15	70
						117	15	70
20						117	15	70
10						117	15	70
20						117	15	
20						117	15	
10						117	15	
20						117	15	
10						117	15	
10						117	15	
						117	15	
20	87	8				117	15	
20	80	8				117	15	
25	81	8				117	15	
	86	8				117	15	
	72	6				117	15	
		Ū.				117	15	
	84	8				117	15	
	01	U				117	15	
20	80	5				117	15	
10	84	7				117	15	
10	20- 20	, 5				117	15	
10	91	8				117	15	
10	80	7				117	15	
10	00	1				117	15	
15	8 /I	Q				11/	15	
10	0 4 85	Q Q	81 3-D			110	12	65
10	05	0	04.51			110	12	62
10						110	12	02
10						100	10	
10						112	10	
10						122	10	
10						111	10	
12						111	10	
10						115	15	
						115	15	
20						122	15	
20						121	15	
20								
117	00	o						
112	õõ	õ						
112								
112								
10								
10								
12			85.Z-P					

15				
20				
20				
15				
10				
12				
10				
10				
20				
20				
10				
10	87.0-P	122	30	65
12		131	20	81
10		127	20	76
10				84
15				
10				
10				
15				
20				

				Wa	lleye		
(Α			В		Y
Weight	River Code L	ength W	eight	Length	Weight	Length	Weight
	68.7-G	530	1440				
	69.5-P	302	22				
3							
4	71.2-E			25	5 12	0	
3				140	6 2.	5	
4							
5	84.3-P	148	30				
4							
4	87.0-P	375	450				
4							
3							
3							
-							
2							
3							
3							
2							
3							
3							
3							
3							
5							

			Rock	bass					
		Α	E	3		Y			ŀ
River Code Len	gth	Weight	Length	Weight	Length	Weight		River Code Ler	ngth
69.5-P	191	130						68.7-G	173
	195	150							205
70.0-P	173	100	97	15				69.5-P	132
	170	95							165
									187
70.5-E	222	230	96	15	52		3		175
	168	80							175
	162	90							
71.2-E	176	100	104	20	52		3		
	180	100	95	15					
			87	12					
								70.0-P	175
76.1-P					47		1		137
					47		1		153
					47		1		168
					47		1		127
					47	,	1		195
					47	,	1		
					47	,	1	70.5-F	172
					47		1	, 0.3 L	202
					.,		-		121
77 O-F	211	200	105	20	36		1		198
77.0 L	173	100	98	20	30		1		156
	1/5	100	50	20	36		1		188
					50		T		100
80 1-F					17	,	1		182
00.1-L					47		T		102
80 8-D	212	200			50	1	2		175
00.0-6	215	200			20		3		175
					52		T		162
92 O F			102	20			-		103
82.U-E			102	20	55		Э		122
			108	25					114
			80	10					182
82.1	188	130	99	20	54		4	71.1-VS	174
			96	15	38		1		187
					39	1	1		
					43		1	71.2-E	184
					50)	2		
					45		2	87.0-P	106
					33		1		
					34		1		
					54		-		

					39	1
					44	2
					49	2
84.3-P	220	210	105	20	57	5
					46	3
					46	3
85.2-P	238	260	104	40	40	2
	130	50				
87.0-P	257	360	96	25	54	2
	212	200	113	30		
	214	200	112	30		
	201	200	100	25		
	210	190	112	30		
			112	30		
			89	15		
			90	20		
			105	30		
			98	25		

	Pumpk	kinseed						Blue
1		В		Y		ļ	4	E
Weight	Length	Weight	Length	Weight	River Code Le	ngth	Weight	Length
110					69.5-P	165	80	95
120						164	90	
						182	110	
40	100	20				192	150	
90	101	20				205	160	
40	102	20				201	150	
110	//	15				1/8	100	
120	8/	15				150	55	
	95	13				134	40	
	90 102	15				181	110	
	103	20				140	50 70	
	100	20				197	110	
130	105	20				105	50	
130	105	20				170	100	
80						161	70	
105						144	55	
50						130	30	
185						115	25	
						160	75	
115	113	20						
200	100	20			70.0-P	143	60	97
30	96	20				187	150	95
170						191	160	
80						214	200	
160						162	90	
35						183	150	
150						165	90	
30						144	60	
140						143	65	
50						178	115	
105						176	110	
40						170	100	
30						130	45	
100						127	45	
110					70.5-E	165	90	110
150						157	70	110
						189	160	110
150						157	70	110
						162	90	
30						176	110	
						189	160	
						165	90	

165	90
178	115
176	110
170	100
165	90
165	90
185	125
178	110
175	100
100	200
199	120
189	150
192	150
203	200
190	140
192	150
153	70
143	50
206	215
122	35
182	120
176	110
155	70
181	115
177	115
180	110
212	240
177	110
170	100
176	130
142	60
165	90
100	50
183	120
185	130
177	110
184	130
185	150
203	190
213	220
200	200
181	110
205	230
225	250
169	100
206	160
167	001
102	90

71.1-VS

71.2-Е

	211	200
	156	85
77.0-Е	217	260
	223	250
80.1-E	205	200
82.1-VS	133	40
84.3-P	215	250
85.2-P	218	200
87.0-P	212	230
	202	240

egill						L	argemo	uth Bas	S
3		Y			A	4	E	3	١
Weight	Length	Weight		River Code Lengt	h	Weight	Length	Weight	Length
10)	54	3	69.5-P			122	15	75
		47	2				99	10	66
		50	3				115	20	78
							105	12	
							78	10	
				70.0-P	349	540	133	30	70
					336	620	92	10	65
					173	65	103	10	67
							105	12	
							143	45	
							142	50	
				70.5-Е			119	20	83
							136	35	73
							92	10	77
							133	20	67
							120	15	
							118	20	
							112	20	
							91	10	
		50	<i>c</i>				91	10	
20 20)	59	6	71.1-VS	147	45			
				71.2-Е	173	60	117	20	
							148	40	
							150	50	
							132	30	
							101	10	
							119	15	
							87	10	
							87	10	
							117	15	
				76.1-P			143	30	
	_	27					146	40	
35	5	3/	1	77.0-E			155	55	
3	5						130	30	
20)							20	
				82.0-E			123	20	
				84.3-P	215	250			

87.0-P	120	30							
	99	15							
		American Shad							
--------	--------	--------------------------	--------	--------	--------	----------	---------------	--	--
1			Y						
Weight		River Code Length	Weight	Length	Weight	Length	Weight		
0	8	69.5-P	0	U	U	87	7 8		
	8					95	5 9		
	8					84	5 8		
						Qr Qr	5 10		
						83	8 8		
						Q	5 8		
	6					8/	1 8		
	6					73	+ 0 8 6		
	6					2, 8(
	0					87	7 8		
						Q-	7 9		
						07 Q(י ט אר פ		
	0					01			
	9					0-	r 8		
	0					0/			
	0 7					0			
	/					.o	L 0		
						01			
						9:	3 8 N 0		
						8:	3 8		
						87	/ 8		
						0/	1 0		
		70.0-P				04	+ 0		
		70 5-F				101	I 10		
		70.5 L				76	5 8		
						67	, 5 7 7		
						81 81	, , I 8		
						01	2 10		
						7	7 9		
						01	, 8 5 10		
						9.	5 10		
						95	7 0		
						77	/ 8 5 10		
						95	0 10		
		71 2_F				83) Q		
		/ 1.Z ⁻ L				7	- 8		
						82	- ,) &		
						02	- 0		
		77.0-E				103	3 10		
		-				100) 10		
						<u></u>	5 10		
						101	L 10		
						_0.	_0		
		80.1-E				92	2 10		
							-		

American Shad

	80	5
	68	5
	80	5
	85	7
	78	5
80.8-P	74	8
82.0-E	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
	91	6
84.3-P	97	10
84.3-P	97 110	10 12
84.3-P 85.2-P	97 110 92	10 12 7
84.3-P 85.2-P	97 110 92 92	10 12 7 7
84.3-P 85.2-P	97 110 92 92 92	10 12 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92	10 12 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
84.3-P 85.2-P	97 110 92 92 92 92 92 92 92 92 92 92 92 92 92	10 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

87.0-P

93 10

	American Eel							
	Α		В			Y		
River Code Lengt	h	Weight	Length	Weig	ht	Length	Weight	
76.1-P						250)	80
82.0-E			55	50	410			
82.1-VS	700	720						
84.3-P	750	720						

Document Content(s)	
<pre>Response_to_comments_on_USR_Meeting_Summary_March_2016.PDF</pre>	. 1
Study 3.5.1 Attachment B.XLSX22	24
Study 3.3.11 Attachment C TF species length_weight data.XLSX23	31